CISA_LOGO

AI封膜辨識

發表年月 2019-12   應用領域 AI製造運用  

應用/研究單位 巨鷗科技股份有限公司

受輔導廠商的椰果產品製造流程中,產品封膜完整性是藉由人工抽樣檢查,因人力資源安排與產線速度不慢兩個因素,目前抽檢覆蓋率為2.5%。 封膜不良的產品一但出貨,不但造成單罐產品損害,也影響同箱產品、運輸工具的汙損,並招致蚊蠅,對整體造成危害,影響商譽。 另外,本產品是高濃縮加工食品,封膜不良若無檢查出來,且買家也未檢測,可能造成食安風暴,十分危險。 因此廠商想導入AI品管檢測方案,一方面想提高檢測覆蓋率,另一方面也希望AI系統可以準確地挑出封膜不良產品,減少不良品出貨的機會。

檢視內容

3D 機器視覺搭配AI路徑規劃引領製鞋自動化新革命

發表年月 2019-12   應用領域 AI製造運用  

應用/研究單位 立普思股份有限公司

利用安裝於工廠產線或各種戶外嚴苛環境的工業等級的 ToF 與stereoscopy 3D相機擷取大量2D與3D影像,經由立普思團隊特殊的AI機器學習演算法與大數據整合,可有效識別並重建各式物體在3D空間中的相關位置資訊,配合立普思獨家的硬體加速與平行處理功能,可實現高禎率即時物件與人形識別,可廣泛應用於工業4.0、智慧零售、智慧農業、健康照護、安全監控等各種不同領域。 立普思的製鞋自動化方案同時整合了2D與3D機器視覺、手臂控制、電漿噴塗、與機台控制等,能有效取代傳統製鞋業的人工步驟,同時藉由單隻或多隻 2D/3D攝影機,透過影像拼接 (image stitch)方式,將物件全方位掃描結果搭配AI深度學習的自動路徑規劃,直接控制機器手臂帶動電漿噴頭,以精準的法向量覆蓋鞋底全表面進行噴塗,相較目前大多數使用線雷射掃描的方案有更快的整體反應速度,同時也更具價格競爭力。立普思的VGR (Vision Guided Robotic) 方案目前已成功導入製鞋生產,此技術同時也可應用在各種相關產業,或是搭配立普思的其他AI應用如人臉辨識 (Facial Recognition)、人流計數 (People Counting) 、身形辨識 (Pose Estimation)等。

檢視內容

利用基因演算法提升紡織業生產排程模擬平台

發表年月 2021-03   應用領域 AI製造運用  

應用/研究單位 漢門科技股份有限公司

受到快時尚及網路購物風潮影響,品牌客戶對即時且準確供貨之要求越趨嚴謹。建構網實智能化製造、生產、銷售系統,以快速反應或預測市場需求,產業供應鏈垂直與水平數位化、智能化,成為全球搶單競爭關鍵。在缺乏即時內外部資訊整合條件下,每次決策都在考驗高層主管的智慧與運氣,常備原料採購時機錯誤就可能導致公司訂單賠錢,生產決策錯誤就可能導致需要空運才能達交,昂貴的空運費即大幅抵銷了訂單利潤。利用基因演算法+資源限制分類,並整合訂單、排程及產能,模擬生產排程資訊提供給廠長決策參考。此一應用可最佳化安排生產,減少瓶頸問題,提高物料供應精準度,減少停工待料的問題。

檢視內容

機台故障預測與健康管理專家

發表年月 2021-05   應用領域 AI製造運用  

應用/研究單位 機智雲股份有限公司 / 逢甲大學張淵仁智慧機械與系統實驗室

案例‒鋼珠製造產業長期以來面臨產品種類眾多、尺寸規格複雜、客戶經常性改單導致生產線產能分配不均、工裝次數頻繁、磨盤異常損壞增加等問題,造成工廠生產效率不佳。鋼珠製造流程從原物料的線材、鍛造到形成鋼珠的粗研磨、熱處理、細研磨、精研磨,最後為成品的洗淨、檢驗和全檢;其中主要的瓶頸為粗研磨至精研磨的關鍵三道研磨製程。其原因為鋼珠在研磨過程無法即時監控磨盤的狀況,容易造成堵溝、尺寸變異,嚴重時將造成磨盤崩裂而傷及鋼珠的完整性,若因人員的疏失造成規值的錯誤,不但造成產能的損失且增加成品久置而生鏽的可能性,增加產品重製的加工成本及工廠的產品產出時間(cycle time)。

檢視內容

國產化製粒產線智慧整合應用系統

發表年月 2020-09   應用領域 AI製造運用  

應用/研究單位 思納捷科技股份有限公司

有許多傳統產業之生產機台大都是封閉式系統,依賴資深的”老師傅”經驗進行機台參數調校,以維持生產順利與生產品質。 然而面臨智慧製造之機台聯網需求,既有機台升級汰換的高額成本大幅阻礙了傳統產業升級的規劃。 因此,此案例透過採用非侵入式感測技術取得傳統製粒機台的電氣信號、振動信號,並使用AI機器學習演算法來建立機台 協助廠商傳統產業建立「生產機台徵兆訊號擷取與連網建置」、「即時生產資訊可視化平台」及「有機肥製造廠區生產智慧化模組」,以協助業者進行有機肥料的品質優化及達到提升設備稼動率並降低生產與人力監控成本

檢視內容

機械手臂視覺瑕疵偵測解決方案

發表年月 2021-02   應用領域 AI製造運用  

應用/研究單位 海量數位工程股份有限公司

透過AOI人工智慧辨識設備結合機器手臂,改善人工目測檢視產品之誤差,以提升效率。未來將AOI所收集之數據與MES系統所記錄之製造數據對照,可快速發現錯誤數據,改善生產效率。

檢視內容

AOI瑕疵分類

發表年月 2020-09   應用領域 AI製造運用  

應用/研究單位 新光網股份有限公司

光學膜製膜裁切時,需由人員針對AOI照片一張一張分類,避開不符規格的瑕疵進行裁切,人員進行瑕疵分類時耗費大量時間與人力。我們設計了一套含有標記、資料前處理、訓練以及模型佈署預測功能的系統平台,人員只需上傳瑕疵資料,並到平台上標記瑕疵類別,系統平台利用卷積神經網路(convolutional neural network, cnn)進行訓練與分類計算。並回饋訓練成果與準確度,提供一鍵式模型佈署,將模型佈署到平台中,人員就可以利用佈署的模型進行預測分析,根據分類結果繪製裁切瑕疵map,人員即可根據瑕疵map建立裁切規格,進行裁切分調,並且有效的將A級率從69%提升至90%。

檢視內容

AI視覺圓周銲接自動化

發表年月 2020-11   應用領域 AI製造運用  

應用/研究單位 所羅門股份有限公司

本案例使用視覺辨識銲道的位置和姿態,再驅使機械手臂進行全周銲。同時進行銲接品質之AI檢測,在銲接完成的端板上方架設一台CCD,捕捉銲道的影像,使用訓練好的模型便可立即辨識出端板銲道的各種缺陷和瑕疵,若辨識出有缺陷或瑕疵的端板會發出警示,通知工作人員進行補銲之作業。

檢視內容

AI.AOI 質檢新應用-DIP 瑕疵質檢機(波峰銲PCBA檢測)

發表年月 2021-01   應用領域 AI製造運用  

應用/研究單位 小柿智檢

小柿自主研發AI DIP瑕疵檢查機。 適用於波峰銲完的PCBA外觀檢測 可搭載在客戶產線上,也可運用在獨立檢測機台 搭配線性掃描光學模組,完整覆蓋拍攝物之表面取像。 自主研發的小樣本學習瑕疵檢測技術,僅使用10~20張良品影像,即可快速建模、投入檢測,適用於少量多樣的場景,客戶使用小量良品,即可在5~10分快速建模,可自動標註元件節省客戶調整時間,即可立即投入產線檢測。自主研發的AI深度學習技術,可實現PCBA之外觀檢測,例如缺件、極反、錯件、偏移、破損等瑕疵檢出。

檢視內容

千金可買早知道 - 設備故障預診斷與健康管理技術

發表年月 2017-08   應用領域 AI製造運用  

應用/研究單位 工業技術研究院服務 巨量資訊科技中心

生產製造公司83%的資訊長認為,設備維護以及總體資產分析最佳化為提升企業競爭力之最主要途徑。「機台故障預診斷」是一套人工智慧(AI)與機器學習的系統,分析機台所產生的製程資料,進行即時監看、預測並以視覺化資料呈現,讓產線管理者可以掌握設備的健康狀態。

檢視內容

殺手級應用:齊料管理精靈,克服製造缺料停工新武器

發表年月 2020-06   應用領域 AI製造運用  

應用/研究單位 智炬科技股份有限公司

齊料管理精靈可以透過預測供應商交貨模式,讓人力集中處理需要跟催或緊急調度的工作安排,提高準確交貨率,並加入廠內的流程運作特徵,放入模型中做為計算參數之一,以期達到如期齊料開工的目標。智炬科技「智慧製造顧問團隊」加入時間序列等機器學習演算法,從企業原有資訊系統中取出預計交貨、實際交貨、預計檢驗、如期檢驗、預計發料、如期發料等資訊,整理數據之後經過演算,得出高度齊料可如期派工的工令順序、以及具高度缺料風險的工令資訊,同時找出可遞補的派工批,讓生管排程更省力化。串聯即時通訊應用技術推播高風險物料狀況,啟動全員關注料況行動,協助企業降低缺料風險,提升生產計劃達成率,減少低價值溝通行為。

檢視內容

Tukey Service - 預防非計畫性停機系統

發表年月 2021-02   應用領域 AI製造運用  

應用/研究單位 Chimes AI 詠鋐智能股份有限公司

由 Chimes AI 詠鋐智能所開發的無程式碼(No-Code)模型生命週期管理平台 Tukey,作為核心引擎,幫助最熟悉機台狀況的設備保養工程師,彈性的調用Tukey內建或是企業投資開發的演算法,建置設備監診 AI 模型。機台設備可根據AI 模型建立設備性能曲線,設備保養工程師可根據此設備性能曲線,監控全廠設備運行狀況。系統根據性能指標預先反應設備衰退現象,經由系統判斷風險等級,協助保修人員安排計畫性維修,提高設備稼動率,延長設備服務年限,有效的降低工安意外災害。

檢視內容

AI布料花色檢索系統

發表年月 2019-09   應用領域 AI製造運用  

應用/研究單位 光禾感知科技有限公司

AI布料花色檢索系統透過數位留樣系統拍照,以AI分類識別,定義不同布料材質、顏色與圖樣款式,在將數種物理特性轉化為數位化資料保存下,開發出數位化織品色彩及花色管理平台,這樣的概念類似於搜索引擎,紡織廠可以透過平台快速檢核庫存及過往記錄中最接近的色樣,以顏色及花紋識別,結合光照系統及色彩管理技術,制定紡織產業在庫存管理、數位資料庫、及產品 QC 的檢核標準,減少在打樣及確認上的時間及人力成本,同時減少人因誤差。

檢視內容

工廠專家級系統應用:企業快速導入機器學習的第一哩路

發表年月 2019-06   應用領域 AI製造運用  

應用/研究單位 杰倫智能科技股份有限公司

JWII Automated ML Engine 可協助製造業以合理的成本與快速的導入來建立高價值系統,解決工廠設備異常損失與工程品質不穩定的問題,藉此提升產品品質、生產效能、與達交率,最終達到智動化生產與智慧工廠的目標。 JWII Automated ML Engine已於諸多產業的製造環節中應用,目前已成功導入光電產業、石化產業、PCB產業、電子組裝產業、金屬加工業、設備製造業、表面處理產業、傳統產業…等,提供製程參數異常偵測、生產配方最佳化推薦、連續性製程品質預測、設備故障停機預測、異常因子分析預測…等相關製造業所應用。 JWII Automated ML Engine 可單獨使用,同時也可與企業應用系統整合如ERP、PLM、MES、IOT、WMS、BI…等異質系統中,讓這些系統被賦予AI 預測與診斷等特性,讓相關系統達到智能化的目標。

檢視內容

AI PHM預兆診斷系統

發表年月 2023-08   應用領域 AI製造運用  

應用/研究單位 PHM/聖森雲端科技

本PHM系統的核心價值在於其能夠精確地預測設備健康狀態與設備的製程狀態,提高生產過程的效率。透過結合IOT、邊緣運算,系統不僅能夠減少算力需求和演算時間,還能夠降低誤判風險,提高模型的遷移性。這項創新技術將為製造業的數位轉型帶來巨大的改變,協助企業實現高效運營和成本降低。

檢視內容