TISSA_LOGO

AI.AOI 質檢新應用-DIP 瑕疵質檢機(波峰銲PCBA檢測)

發表年月 2021-01   應用領域 AI製造運用  

應用/研究單位 小柿智檢

小柿自主研發AI DIP瑕疵檢查機。 適用於波峰銲完的PCBA外觀檢測 可搭載在客戶產線上,也可運用在獨立檢測機台 搭配線性掃描光學模組,完整覆蓋拍攝物之表面取像。 自主研發的小樣本學習瑕疵檢測技術,僅使用10~20張良品影像,即可快速建模、投入檢測,適用於少量多樣的場景,客戶使用小量良品,即可在5~10分快速建模,可自動標註元件節省客戶調整時間,即可立即投入產線檢測。自主研發的AI深度學習技術,可實現PCBA之外觀檢測,例如缺件、極反、錯件、偏移、破損等瑕疵檢出。

檢視內容

AI智慧製造解決方案-工廠設備預知保養

發表年月 2023-08   應用領域 AI製造運用  

應用/研究單位 國內製造業石化產業

基於設備大數據的預測性維護與診斷 AVEVA PRiSM的APR技術 (Advanced Pattern Recognition先進模式識別),將設備的實時運行數據同其特有運行模式進行比對,發現系統行爲的細微差異,從而對設備可能存在的問題進行提前預警,實現對設備的預測性維護。早於傳統報警系統數天、數周或數月進行預警 傳統的警告方式為設定上、下界限,但PRiSM是以點的周圍來計算,利用演算法建立一個正常的模式,當實際值和預測值之間的偏差超過允許的限制時進行預先報警。

檢視內容

NICE 機器人流程自動化

發表年月 2000-01   應用領域 AI製造運用  

應用/研究單位 大同世界科技

機器人流程自動化(RPA)是一套軟體自動化機器人程式,可以用來模擬人類在電腦上辦公的作業流程和行為,且不需經由特殊的硬體設備,即能將這些重複且枯燥的電腦桌面作業程序自動化。 RPA可以全天24小時待命,不僅可節省作業時間,讓企業將人力投資在更高價值的工作上,並降低人為出錯率

檢視內容

利用基因演算法提升紡織業生產排程模擬平台

發表年月 2021-03   應用領域 AI製造運用  

應用/研究單位 漢門科技股份有限公司

受到快時尚及網路購物風潮影響,品牌客戶對即時且準確供貨之要求越趨嚴謹。建構網實智能化製造、生產、銷售系統,以快速反應或預測市場需求,產業供應鏈垂直與水平數位化、智能化,成為全球搶單競爭關鍵。在缺乏即時內外部資訊整合條件下,每次決策都在考驗高層主管的智慧與運氣,常備原料採購時機錯誤就可能導致公司訂單賠錢,生產決策錯誤就可能導致需要空運才能達交,昂貴的空運費即大幅抵銷了訂單利潤。利用基因演算法+資源限制分類,並整合訂單、排程及產能,模擬生產排程資訊提供給廠長決策參考。此一應用可最佳化安排生產,減少瓶頸問題,提高物料供應精準度,減少停工待料的問題。

檢視內容

克服 AI 智慧應用落地挑戰,導入一站式 AIoT 智慧平台,打造智造閉環

發表年月 2021-03   應用領域 AI製造運用  

應用/研究單位 中冠資訊股份有限公司

中冠 AIoT 智慧平台最主要的目的,是要將分散部署在不同電腦的AI應用,整合到同一個Web平臺中,讓員工只要以瀏覽器開啟入口網站,登入帳密,就能一站式管理工廠所有的生產資訊。例如:爐壁厚度監測AI,可透過爐壁探鑽深度與周圍壁面溫度變化的關聯性,訓練AI靠爐壁溫度變化,判斷爐壁厚薄,藉以預測爐壁冷卻元件受損情形,安排檢修時程。爐熱溫度預測AI 則是透過量測出鐵口的鐵水溫度變化,參考操作條件、鐵渣的化性分析,學習預知未來2~4小時的爐熱趨勢,藉此訓練出爐熱預測的AI,若預測到未來爐熱可能下降,就能即時調整生產參數,微調風溫、噴煤量,來維持爐熱的穩定。各 AI 智能應用案例細節,可參閱 https://www.ithome.com.tw/news/142938 報導

檢視內容

AI決策時代來臨!瑕疵檢測不再靠眼力,AI驅動AOI打造零缺陷智慧產線

發表年月 2025-11   應用領域 AI製造運用  

應用/研究單位 魔幣雲公司

本案AI瑕疵檢測系統採用模組化AI影像辨識架構,能依不同產線或產品特性快速調整應用模組,例如CNC加工瑕疵檢測、安全帽佩戴偵測等場域皆可靈活部署。系統具備參數化模型調控設計,可依產品規格設定辨識閾值與容許範圍,使用者能於後台即時調整以對應不同製程條件。透過邊緣運算技術結合高速工業相機與Jetson模組,系統可在0.3秒內完成瑕疵辨識與信心值判定,並自動回傳訊號至PLC進行不良品標示。此外,系統具備跨場域資料遷移學習能力,能根據既有標註資料快速微調模型,以降低重複建模成本。導入前提供POC原型驗證流程,讓客戶能於實際產線測試辨識成效與操作介面,確保後續開發更貼近實務需求。部署上採低門檻模組化設計,可透過月租或授權模式導入,提升企業導入意願。系統上線後提供模型再訓練、參數微調與遠端維運機制,確保AI辨識能力能隨產線變化持續優化,達成長期穩定運行與智慧製造轉型目標。

檢視內容

自動化產線換線新利器: AI機器人自主學習技術

發表年月 2019-03   應用領域 AI製造運用  

應用/研究單位 工業技術研究院 巨量資訊科技中心

因應彈性化製造之生產趨勢,製造業需要導入AI以快速學習適應不同的生產需求。AI自主學習機器人是未來製造業邁向AI時代的關鍵技術,目前工廠導入視覺機器人必須仰賴演算法工程師針對不同工件調整參數來達成任務,造成換線/任務耗時耗力。工研院以深度增強式學習(Deep Reinforcement Learning,DRL)為基礎,研發自主學習之AI機器人夾取技術, 簡單、易用,補足勞力需求。本技術之特色與創新包含: 1.機器人自主嘗試學習,減少人為介入,讓換線能夠更加快速、有彈性2.以DRL技術提供更快速、更穩定、更精確的訓練機制3.結合機器人模擬軟體,大幅減少整體學習時間與實體嘗試的次數

檢視內容

AI智慧缺陷辨識系統-應用於非破壞檢測設備的磁粉探傷解決方案

發表年月 2024-07   應用領域 AI製造運用  

應用/研究單位 美國煉油公司、日本汽車零件製造廠、台灣軍工研發單位等

本系統運用 DeepLabV3 深度學習演算法,建構一套針對保安零件瑕疵辨識的 AI 模型。為提升辨識準確率,開發團隊進行了多種攝影鏡頭與取像環境的測試,共拍攝 1,200 張探傷缺陷影像做為訓練資料,藉此強化模型辨識能力。系統透過筆電連接 RS232 轉 USB 介面,接收啟動指令後,每秒擷取 30 張即時畫面,並對每張影像應用 C1 子項所設計的瑕疵辨識演算法進行判讀,並即時在螢幕上標示出探傷瑕疵部位。整體架構可應用於製造流程的品質控管以及非破壞檢測的磁粉探傷,提升檢測探傷效率化和省人化,協助企業實現智慧缺陷非破壞檢測的探傷解決方案目標精進。

檢視內容

AI封膜辨識

發表年月 2019-12   應用領域 AI製造運用  

應用/研究單位 巨鷗科技股份有限公司

受輔導廠商的椰果產品製造流程中,產品封膜完整性是藉由人工抽樣檢查,因人力資源安排與產線速度不慢兩個因素,目前抽檢覆蓋率為2.5%。 封膜不良的產品一但出貨,不但造成單罐產品損害,也影響同箱產品、運輸工具的汙損,並招致蚊蠅,對整體造成危害,影響商譽。 另外,本產品是高濃縮加工食品,封膜不良若無檢查出來,且買家也未檢測,可能造成食安風暴,十分危險。 因此廠商想導入AI品管檢測方案,一方面想提高檢測覆蓋率,另一方面也希望AI系統可以準確地挑出封膜不良產品,減少不良品出貨的機會。

檢視內容

智慧水廠 - AI優化之水處理智能操作指引

發表年月 2025-11   應用領域 AI製造運用  

應用/研究單位 新鼎系統股份有限公司

透過AI多變數分析應用之技術,可以對水質進行更精確的監控與分析,實現更高效的水資源管理和處理過程。AI系統將自動調整處理工序,以應對不同的水質變化,確保出水質量滿足安全標準,同時提升水質穩定度,避免原料(藥劑)浪費。本案採用新鼎自行開發之人工智慧運行平台產品Mr.OPX(智能維運及製程優化平台),透過平台和再生水廠DCS系統串接,進行資料即時收集,並透過模型管理功能,有效的進行模型運行及維運,也透過視覺化分析介面,提供操作員即時的AI指引,協助操作員提前進行加藥調控,從而提升操作效率並實現最佳經濟效益。

檢視內容

物流場域易碎品隨機辨識系統

發表年月 2020-05   應用領域 AI製造運用  

應用/研究單位 所羅門股份有限公司

一般市面上的機械手臂通常只能執行單一物件的取放,在少量多樣或產品變異性高的產線中,不容易實現自動化的需求。本案透過AI演算法和3D成像技術來揀選未知物品,即使它們被緊密的包裝在一起,仍然能夠辨識出個別包裹,系統也能計算出最佳的揀選點,規畫路徑引導手臂避免碰撞。

檢視內容

混動工業生產:敏捷智能報工系統

發表年月 2019-03   應用領域 AI製造運用  

應用/研究單位 零次方科技有限公司

智慧製造+產業AI化的升級已在國人心中醞釀已久,期待一套敏捷且彈性的智能報工系統,為工廠帶來數位化與智能化提升。 3K環境以及八國聯軍設備往往是機械製造業數位化與智能化最大的挑戰,加上廠內同時存在工業1.0-4.0的混動生產情形,報工作業往往需要高度人力介入,因此敏智能報工系統應運而生。 敏捷智能報工系統具備AI即時多報工模式、機聯網、高移動性移動裝置、即時監控生產效益等特點,將第一手現場數據回傳戰情中心,讓Data晉身Information,協助企業做好完善廠區、稼動率或異常等管理。 此外搭配深度學習與視覺辨識服務,有效協助身處3K現場作業人員進行工件辨識計數或不良品辨識,大幅降低人力與重複教育訓練的成本。 零次方科技團隊由人工智慧、軟體工程、工業工程、用戶體驗等專家組成,為製造業不同需求提供高專業度顧問分析服務與客製化服務。目前系統已在台中工業區製造業實際導入與上線使用。

檢視內容

AI 智能自動光學檢測技術

發表年月 2016-04   應用領域 AI製造運用  

應用/研究單位 智合科技有限公司

智合科技的研發團隊 採用最新人工智慧深度學習(Deep Learning) 並結合 AOI 技術, 可進行 不規則形狀物件的品質評估:使用 AI 物件偵測, 然後再透過 AOI 進行 2D 資訊計算, 產生評估數據 例如:農業產品 / 不易數據化的物件 / 非標準品的測量 / 2D 與 3D 的數據呈現 不易測量的物件:使用 AI 的技術, 針對邊緣影像的準確度進行推估, 確保整體的檢測數據的信賴性 例如:高精密度金屬加工物件的邊緣值 另外可透過 嵌入式邊緣計算平台, 進行上述技術的整合, 有效降低整體系統的建置成本

檢視內容

多模態生成式AI用於汽車再製造零件辨識

發表年月 2023-10   應用領域 AI製造運用  

應用/研究單位 BerkeleyStandard

汽車零件再製造工廠每年要生產的型號會跟著二手市場變化,以傳動箱來說,市面上最常見的二手零件不會超過500種,但每年都會淘汰最老的50種,同時增加新的50種。如果將每個零件拿去不同角度和不同背景拍攝,每種傳動箱大約要拍攝1000張訓練張影像,要讓傳統的物件分類AI持續每年學習,每年都要準備50000張訓練影像,透過生成式AI,客戶願意每年針對50種零件掃描建模,訓練出來的辨識器可以幫助再製造工廠辨識現場的原料,協助原料管控同時,也可以降低採購在零售商的溝通成本。

檢視內容