TISSA_LOGO

客製化智慧製造分析:工業數據平台、產線 AI 視覺

發表年月 2019-03   應用領域 AI製造運用  

應用/研究單位 廣宣科技有限公司、台大電機工程所

智慧製造、工業4.0的概念已經對製造業帶來了一個新的概念,人工智能、5G、物聯網已經帶來了技術上的可行性,智能化 MES、CPS IoT/AIoT、智能控制系統、運用機器人的自動化,將帶來工業 4.0所強調的互聯、整合、數據、創新與轉型,並結合公司整體 ERP 與 CRM 系統,帶來更低成本、高品質、顧客高滿意度、符合市場快速更迭的製造服務與產品。 廣宣科技智能製造團隊,運用特殊 AI 深度特徵解析技術,將連續或離散生產數據,加以智能化處理,將所有產線效能指標做相依度之計算,並運用當前人工智慧解析特徵黑盒子的最新技術,將產線數據找出關鍵特徵,並配合製造專家顧問團隊進行產線問題解讀、並進一步透過各樣規則建模,並控制各項變因進行製程優化。不但可達到數據可視化、提升產線透明度,更能透過智能控制系統,達到互聯、集成,甚至反饋控制的效果。廣宣科技智能團隊由人工智慧資料科學家、工業工程專家、資深廠長級顧問團隊、控制系統專家、資訊系統整合專家組成,為不同工業需求提供客製化與具深度的顧問分析服務與智能資訊平台。已與多家兩岸三地製造業、化工業、電商物流業進行系統客製與智能化諮詢。

檢視內容

AI視覺圓周銲接自動化

發表年月 2020-11   應用領域 AI製造運用  

應用/研究單位 所羅門股份有限公司

本案例使用視覺辨識銲道的位置和姿態,再驅使機械手臂進行全周銲。同時進行銲接品質之AI檢測,在銲接完成的端板上方架設一台CCD,捕捉銲道的影像,使用訓練好的模型便可立即辨識出端板銲道的各種缺陷和瑕疵,若辨識出有缺陷或瑕疵的端板會發出警示,通知工作人員進行補銲之作業。

檢視內容

AI軟體以一擋百,助攻企業視覺檢測不漏接

發表年月 2019-07   應用領域 AI製造運用  

應用/研究單位 Memorence AI

憶象智能影像辨識系統可以協助客戶三大方向:一提升營業額:為提高生產品質,將人工辨識的產品不良率, 藉由AI智能辨識提升產品的良率;二,降低成本:從需要大量人工的目檢辨識工作,轉由AI辨識降低錯誤節省人力, 提高生產效能,三,企業專業知識管理:縮減教育訓練時程/預防專業知識的斷層(師傅退休/跳槽)。憶象智能影像辨識系統採用最先進的深度學習之捲積神經網路(convolutional neural networks, CNNs)與電腦視覺技術,團隊具備開發AI模型設計與系統開發能力,設計出符合應用單位的AI模型,產出最符合應用客戶之檢測模型, 讓使用者可明顯獲得差異性的產品成效新體驗。 憶象智能影像辨識系統整合客戶檢測產品之圖像管理與標記,AI模型,即時統計,一站式的服務幫助企業檢視各生產鏈的問題點, 及優化備料與生產裝置設定。憶象智能影像辨識系統可以應用於各種產業的生產線應用,目前已成功導入電子業、傳統製造業、健康醫療…等,提供工廠與生產線之智慧視覺辨識應用。

檢視內容

3D 機器視覺搭配AI路徑規劃引領製鞋自動化新革命

發表年月 2019-12   應用領域 AI製造運用  

應用/研究單位 立普思股份有限公司

利用安裝於工廠產線或各種戶外嚴苛環境的工業等級的 ToF 與stereoscopy 3D相機擷取大量2D與3D影像,經由立普思團隊特殊的AI機器學習演算法與大數據整合,可有效識別並重建各式物體在3D空間中的相關位置資訊,配合立普思獨家的硬體加速與平行處理功能,可實現高禎率即時物件與人形識別,可廣泛應用於工業4.0、智慧零售、智慧農業、健康照護、安全監控等各種不同領域。 立普思的製鞋自動化方案同時整合了2D與3D機器視覺、手臂控制、電漿噴塗、與機台控制等,能有效取代傳統製鞋業的人工步驟,同時藉由單隻或多隻 2D/3D攝影機,透過影像拼接 (image stitch)方式,將物件全方位掃描結果搭配AI深度學習的自動路徑規劃,直接控制機器手臂帶動電漿噴頭,以精準的法向量覆蓋鞋底全表面進行噴塗,相較目前大多數使用線雷射掃描的方案有更快的整體反應速度,同時也更具價格競爭力。立普思的VGR (Vision Guided Robotic) 方案目前已成功導入製鞋生產,此技術同時也可應用在各種相關產業,或是搭配立普思的其他AI應用如人臉辨識 (Facial Recognition)、人流計數 (People Counting) 、身形辨識 (Pose Estimation)等。

檢視內容

AI智慧製造解決方案-工廠設備預知保養

發表年月 2023-08   應用領域 AI製造運用  

應用/研究單位 國內製造業石化產業

基於設備大數據的預測性維護與診斷 AVEVA PRiSM的APR技術 (Advanced Pattern Recognition先進模式識別),將設備的實時運行數據同其特有運行模式進行比對,發現系統行爲的細微差異,從而對設備可能存在的問題進行提前預警,實現對設備的預測性維護。早於傳統報警系統數天、數周或數月進行預警 傳統的警告方式為設定上、下界限,但PRiSM是以點的周圍來計算,利用演算法建立一個正常的模式,當實際值和預測值之間的偏差超過允許的限制時進行預先報警。

檢視內容

AOI瑕疵分類

發表年月 2020-09   應用領域 AI製造運用  

應用/研究單位 新光網股份有限公司

光學膜製膜裁切時,需由人員針對AOI照片一張一張分類,避開不符規格的瑕疵進行裁切,人員進行瑕疵分類時耗費大量時間與人力。我們設計了一套含有標記、資料前處理、訓練以及模型佈署預測功能的系統平台,人員只需上傳瑕疵資料,並到平台上標記瑕疵類別,系統平台利用卷積神經網路(convolutional neural network, cnn)進行訓練與分類計算。並回饋訓練成果與準確度,提供一鍵式模型佈署,將模型佈署到平台中,人員就可以利用佈署的模型進行預測分析,根據分類結果繪製裁切瑕疵map,人員即可根據瑕疵map建立裁切規格,進行裁切分調,並且有效的將A級率從69%提升至90%。

檢視內容

空調冰機系統 AI 最佳化工程

發表年月 2024-08   應用領域 AI製造運用  

應用/研究單位 駿暘科技有限公司

AI 精準決策,即時整合設備效能、警報數據與運行狀況,提供設備校準建議、數據排查方向與通訊優化策略,驅動最佳管理決策。即時分析與建議,快速整合系統內外部數據,協助企業快速應對能源管理決策。能源基線提供了數據支持,使企業能夠制定更科學、合理的進行節能行動方案,精準掌握能源使用的關鍵指標。追蹤節能績效歷史:追蹤並評估歷史能源管理措施的成效,可供做ISO 50001查核。

檢視內容

智慧製造-MusesAI協助企業產線建立您自己的AI模型

發表年月 2021-07   應用領域 AI製造運用  

應用/研究單位 科智企業股份有限公司

MusesAI- 是提供製造業非資訊人員,透過一站式介面指示精靈,可快速、簡單、準確度高方式,在系統介面自動協同標註特徵及自動訓練AI模型,而後即可立即下載佈署使用的一站式AI模型開發平台,其中AI應用模組類別包含影像類及數據類兩大方向,影像類涵蓋物件辨識(數量、標工)、人員行為辨識、工地安全等;而數據類則涵蓋機台閒置預測、設備故障診斷等應用,可大幅降低一般AI模型開發門檻及投入時間。

檢視內容

製造業核心痛點:刀具壽命管理 不再miss任何可以切削的機會

發表年月 2019-03   應用領域 AI製造運用  

應用/研究單位 科智企業股份有限公司

AI刀具智慧壽命監控可以將工廠重要議題浮出檯面並予以解決,透過機器數據收集,大量擷取機台資訊創造原始資料庫,科智企業採用人工智慧深度學習(Deep Learning),以及演算法,透過平台整合所有資料來源並精密分析運算後,讓工廠最常出現的耗材「刀具」予以控管,並且知悉刀具使用時間、個別磨耗程度、追蹤管理刀具庫,同時也具備磨耗預警功能,讓使用者能快速掌握工廠加工狀況,以確保所製造出的產品品質以及刀具成本控管。 同時也可以整合科智企業發展的ServCloud,不僅協助自主客戶並能擴大至上下游,整合各個廠域工廠資料,打造智慧供應鏈,也可以將原先廠內的ERP、MES資料進行介接,不浪費企業內部資源。將機台、人員、金流、報工資訊等重要工廠議題,進行整合與使用,讓工廠資訊即時且透明化。目前已成功導入台灣中小事業群體,以及外銷機聯網產品至海外如:泰國、印度、大陸、歐洲等國家。

檢視內容

製造業GenAI專家問答決策系統

發表年月 2025-11   應用領域 AI製造運用  

應用/研究單位 QAMSTAR TECHNOLOGY CO., LTD

整合產線運行資料與專業技術人員標記的品質資訊,建立可用於知識理解與語意推論的數據基礎。透過 Embedding 技術,將包含環境感測參數(如:溫溼度)、品質預測(如:LSTM 預測濾網更換等)、設備稼動狀態與製程事件記錄等原始資料轉換為高維語意向量,提供語言模型進行語意匹配與問題解答的依據。 系統搭配 LLAMA 3 語言模型,可接收來自使用者的自然語言提問(User Prompt)與系統提示(System Prompt),並結合語意向量進行推論。為提升回答的實用性與準確度,系統可根據回應結果的品質,動態調整 Embedding 模組的權重參數,使模型更貼近鑄造領域的語境與判斷邏輯,逐步優化回應品質。

檢視內容

千金可買早知道 - 設備故障預診斷與健康管理技術

發表年月 2017-08   應用領域 AI製造運用  

應用/研究單位 工業技術研究院服務 巨量資訊科技中心

生產製造公司83%的資訊長認為,設備維護以及總體資產分析最佳化為提升企業競爭力之最主要途徑。「機台故障預診斷」是一套人工智慧(AI)與機器學習的系統,分析機台所產生的製程資料,進行即時監看、預測並以視覺化資料呈現,讓產線管理者可以掌握設備的健康狀態。

檢視內容

機能性飲品AI智慧工廠

發表年月 2019-09   應用領域 AI製造運用  

應用/研究單位 所羅門股份有限公司

在高速生產的產線中,使用AI方式檢測機能性飲品瓶罐的缺陷,包括瓶口裂紋、瓶蓋破損、字體噴印不良、異物掉入等,提升瑕疵檢出的能力,大幅強化產線溯源管理及紀錄存留的效率。

檢視內容

數位分身模擬軟體開發

發表年月 2024-12   應用領域 AI製造運用  

應用/研究單位 優智能股份有限公司

透過人工智慧演算法來實現 (1) 工程師的調校經驗系統化及 (2) 調校結果的量化分析,幫助專業工程師在更短時間找出更佳的參數組合。此工具初期是以人機協作的方式運行,隨著智慧系統在過程中不斷自動學習最終可達到產品模型參數的全自動調校。

檢視內容

及時偵測軸承不良品-產品品質指標預測是關鍵

發表年月 2018-07   應用領域 AI製造運用  

應用/研究單位 工業技術研究院 巨量資訊科技中心

工研院研發產品品質指標預測技術,與軸承製造大廠T公司合作進行軸承加工產線的線上測試,基於機台電力、加工應變力等大數據,透過智慧分析瞭解刀具狀態與工件品質關係,及時偵測NoGo工件,降低損失。並藉由及時調整抽檢頻率,動態配置檢測人力,使傳統離線且需成品完成後的抽檢改為線上即時的全面檢測。

檢視內容

焊接機器人的極致應用-手臂預兆診斷及焊接品質監測

發表年月 2020-05   應用領域 AI製造運用  

應用/研究單位 智炬科技股份有限公司

現今工廠自動化的趨勢,已開始由大量機器人取代人工作業,製造業對機器人的需求及依賴程度越高,企業如何確保機器人的高可靠性呢? 因此,能夠自主性判別設備狀態與減少非計畫性停機更成為企業所需要深入探究的課題。機器學習智能監控系統即是針對各式機械設備的動態監測,使用者透過簡單建立健康規範,系統學習動作依照所累積的數據統計進而做出分析判斷,產業進而可訂立預知保養計畫並有助於設計者優化產線設計流程。 藉由即時偵測動態機械之訊號,可預測判斷機械手臂的健康狀況,及焊接作業品質的線上即時監測,使企業有較餘裕的時間安排設備維護與產線,將導入機器人的初衷發揮到極致,『做得快且做得好』

檢視內容