TISSA_LOGO

AI智慧瑕疵檢測-織造業者織帶檢測

發表年月 2020-11   應用領域 AI製造運用  

應用/研究單位 巨鷗科技股份有限公司

因現場操作人員無法兼顧所有機台確認狀況,當織帶編織錯誤時, 需到最後品管包裝才能確認錯誤,現場機台編織織帶60~70碼/時,會造成相當長度的損失。 當織帶會遇到明顯不良包括脫線、預計導入鞋帶工廠織帶良率檢測系統改善品管流程提前修正錯誤降低材料耗損。

檢視內容

聯覺科技 - 人工智慧驅動的數位紡織孿生 Create 3D Digital Fabric Twins with NunoX AI

發表年月 2025-07   應用領域 AI製造運用  

應用/研究單位 聯覺科技股份有限公司(NunoX Technologies Co., Ltd.)

專為現代紡織業打造的 AI 驅動布料數位化解決方案,結合高解析度掃描機與雲端軟體,將織物的開發、共享與生產全面數位化。只需幾個步驟,即可生成精準呈現織紋與物理特性的數位孿生,並於 3D 環境中即時預覽與模擬垂墜效果,實現打樣前的快速設計決策。 透過 AI 自動完成無縫拼接與紋理貼圖,NunoX 大幅簡化繁瑣流程,降低 3D 設計的導入門檻。所有數位布料可即時儲存、編輯與分享,為全球供應鏈帶來更高效的協作體驗。 導入 NunoX 解決方案有助於減少樣品浪費、減短開發時程,加速產品上市,現已獲 Under Armour、Makalot、Little King、SHAHI 等全球領先品牌信賴,持續引領數位材料開發與管理的未來。

檢視內容

智慧導航服務機器人 (iAGV),理貨分貨真輕鬆

發表年月 2018-06   應用領域 AI製造運用  

應用/研究單位 工業技術研究院服務系統科技中心

智慧導航服務機器人 (iAGV)應用深度攝影智慧影像辨識技術與智動化科技、超音波感測技術,以Edge Computing快速反應為基礎,透過不同深度差找出特徵差異點因應不同工作環境需求之多元化定位,內建數量核對的AI揀貨同時進行數量核對,並具備「動線最適化」及「壅塞避免」的動線運算引擎,大幅提升作業效率,並獲得2018資訊月百大創新產品。工研院服科中心「iAGV智慧導航服務機器人 」突破天花板特徵深度辨識透過不同深度差找出特徵差異點,以導航整合天花板特徵深度辨識定位、導航、避障、定位等功能直接進行優化,以Edge Computing控制導航/定位模式的調整、地圖建立邏輯改良及行走控制等的動作。以低成本為考量採用簡易單晶片控制伺服馬達,並搭配低成本之影像導引裝置,達成符合業界需求價格的產品。並可機器人到貨架取貨,減少人行走道貨物能夠更緊密地存放,同時,省去員工走到貨架、取貨時間,讓出貨更有效率,節省理貨25%工時、減少人員移動距離35%與成本15%,滿足B2B、B2C等多型態發貨中心需求,並成功導入宅配物流業、資訊消費性電子產品發貨中心…等國內業者。

檢視內容

AI軟體以一擋百,助攻企業視覺檢測不漏接

發表年月 2019-07   應用領域 AI製造運用  

應用/研究單位 Memorence AI

憶象智能影像辨識系統可以協助客戶三大方向:一提升營業額:為提高生產品質,將人工辨識的產品不良率, 藉由AI智能辨識提升產品的良率;二,降低成本:從需要大量人工的目檢辨識工作,轉由AI辨識降低錯誤節省人力, 提高生產效能,三,企業專業知識管理:縮減教育訓練時程/預防專業知識的斷層(師傅退休/跳槽)。憶象智能影像辨識系統採用最先進的深度學習之捲積神經網路(convolutional neural networks, CNNs)與電腦視覺技術,團隊具備開發AI模型設計與系統開發能力,設計出符合應用單位的AI模型,產出最符合應用客戶之檢測模型, 讓使用者可明顯獲得差異性的產品成效新體驗。 憶象智能影像辨識系統整合客戶檢測產品之圖像管理與標記,AI模型,即時統計,一站式的服務幫助企業檢視各生產鏈的問題點, 及優化備料與生產裝置設定。憶象智能影像辨識系統可以應用於各種產業的生產線應用,目前已成功導入電子業、傳統製造業、健康醫療…等,提供工廠與生產線之智慧視覺辨識應用。

檢視內容

智慧製造-MusesAI協助企業產線建立您自己的AI模型

發表年月 2021-07   應用領域 AI製造運用  

應用/研究單位 科智企業股份有限公司

MusesAI- 是提供製造業非資訊人員,透過一站式介面指示精靈,可快速、簡單、準確度高方式,在系統介面自動協同標註特徵及自動訓練AI模型,而後即可立即下載佈署使用的一站式AI模型開發平台,其中AI應用模組類別包含影像類及數據類兩大方向,影像類涵蓋物件辨識(數量、標工)、人員行為辨識、工地安全等;而數據類則涵蓋機台閒置預測、設備故障診斷等應用,可大幅降低一般AI模型開發門檻及投入時間。

檢視內容

3D 機器視覺搭配AI路徑規劃引領製鞋自動化新革命

發表年月 2019-12   應用領域 AI製造運用  

應用/研究單位 立普思股份有限公司

利用安裝於工廠產線或各種戶外嚴苛環境的工業等級的 ToF 與stereoscopy 3D相機擷取大量2D與3D影像,經由立普思團隊特殊的AI機器學習演算法與大數據整合,可有效識別並重建各式物體在3D空間中的相關位置資訊,配合立普思獨家的硬體加速與平行處理功能,可實現高禎率即時物件與人形識別,可廣泛應用於工業4.0、智慧零售、智慧農業、健康照護、安全監控等各種不同領域。 立普思的製鞋自動化方案同時整合了2D與3D機器視覺、手臂控制、電漿噴塗、與機台控制等,能有效取代傳統製鞋業的人工步驟,同時藉由單隻或多隻 2D/3D攝影機,透過影像拼接 (image stitch)方式,將物件全方位掃描結果搭配AI深度學習的自動路徑規劃,直接控制機器手臂帶動電漿噴頭,以精準的法向量覆蓋鞋底全表面進行噴塗,相較目前大多數使用線雷射掃描的方案有更快的整體反應速度,同時也更具價格競爭力。立普思的VGR (Vision Guided Robotic) 方案目前已成功導入製鞋生產,此技術同時也可應用在各種相關產業,或是搭配立普思的其他AI應用如人臉辨識 (Facial Recognition)、人流計數 (People Counting) 、身形辨識 (Pose Estimation)等。

檢視內容

全方位3D智慧自動化極光設備

發表年月 2019-03   應用領域 AI製造運用  

應用/研究單位 大氣電漿股份有限公司

3D空氣極光表面改質系統,使用結構光深度視覺掃瞄,具速度快、精度高,可即時掃瞄生成路徑,進行極光表面改質,適用於各種形狀及材質,無需事先進行任何設定。此應用對於中小企業或傳統產業,非常的重要,雖然多關結式的機器手臂最接近人體的結構,使用上相對靈活,很適合應用在少量多樣的製造。但這種機器人在設定及操作上也相對的複雜,所以一般的中小企業或傳統產業,極少有能力可以設定及撰寫多關結式機器人的程式,加上要收集手臂上的數據完全是難上加難,造成產業升級、彈性製造都淪為空談。 我司自主研發的極光表面改質系統,在異質接合上改善傳統製程上的污染,以鞋業為例:原本橡膠和EVA的接合,需要打磨、酸鹼洗、烘乾、處理劑、膠水等步驟,其中會產水和空氣的污染,造成企業成本上升、居民抗議、環境負擔。但如果使用我司的極光表面改質系統,橡膠與EVA的結合,製程上會改成清水洗、烘乾、極光處理、水膠接合。不但工序減少、產能提升,更重要的是與傳統製程相比,至少減少99%的環境污染,而達成企業、消費者、地球 三贏的局面。

檢視內容

AI決策時代來臨!瑕疵檢測不再靠眼力,AI驅動AOI打造零缺陷智慧產線

發表年月 2025-11   應用領域 AI製造運用  

應用/研究單位 魔幣雲公司

本案AI瑕疵檢測系統採用模組化AI影像辨識架構,能依不同產線或產品特性快速調整應用模組,例如CNC加工瑕疵檢測、安全帽佩戴偵測等場域皆可靈活部署。系統具備參數化模型調控設計,可依產品規格設定辨識閾值與容許範圍,使用者能於後台即時調整以對應不同製程條件。透過邊緣運算技術結合高速工業相機與Jetson模組,系統可在0.3秒內完成瑕疵辨識與信心值判定,並自動回傳訊號至PLC進行不良品標示。此外,系統具備跨場域資料遷移學習能力,能根據既有標註資料快速微調模型,以降低重複建模成本。導入前提供POC原型驗證流程,讓客戶能於實際產線測試辨識成效與操作介面,確保後續開發更貼近實務需求。部署上採低門檻模組化設計,可透過月租或授權模式導入,提升企業導入意願。系統上線後提供模型再訓練、參數微調與遠端維運機制,確保AI辨識能力能隨產線變化持續優化,達成長期穩定運行與智慧製造轉型目標。

檢視內容

工廠專家級系統應用:企業快速導入機器學習的第一哩路

發表年月 2019-06   應用領域 AI製造運用  

應用/研究單位 杰倫智能科技股份有限公司

JWII Automated ML Engine 可協助製造業以合理的成本與快速的導入來建立高價值系統,解決工廠設備異常損失與工程品質不穩定的問題,藉此提升產品品質、生產效能、與達交率,最終達到智動化生產與智慧工廠的目標。 JWII Automated ML Engine已於諸多產業的製造環節中應用,目前已成功導入光電產業、石化產業、PCB產業、電子組裝產業、金屬加工業、設備製造業、表面處理產業、傳統產業…等,提供製程參數異常偵測、生產配方最佳化推薦、連續性製程品質預測、設備故障停機預測、異常因子分析預測…等相關製造業所應用。 JWII Automated ML Engine 可單獨使用,同時也可與企業應用系統整合如ERP、PLM、MES、IOT、WMS、BI…等異質系統中,讓這些系統被賦予AI 預測與診斷等特性,讓相關系統達到智能化的目標。

檢視內容

AI航燃靜電消散劑添加量優化系統提供人員作業依據 確保運送作業安全

發表年月 2023-09   應用領域 AI製造運用  

應用/研究單位 科智企業股份有限公司

AI航燃靜電消散劑添加量優化系統,透過大量感測器資料數據收集創造原始資料庫,科智企業採用人工智慧深度學習(Deep Learning),以及演算法,透過MusesAI平台整合所有資料來源並精密分析運算後,即時監控工廠油槽靜電穩定度,提升出油槽量導電度之穩定性,協助改善客戶端現有之航燃靜電消散劑添加量優化之依據,讓使用者能快速掌握油槽狀況,以確保運送過程安全。 同時也可以整合科智企業發展的ServCloud,不僅協助自主客戶並能擴大至上下游,整合各個廠域工廠資料,打造智慧供應鏈,也可以將原先廠內的ERP、MES資料進行介接,不浪費企業內部資源。將機台、人員、金流、報工資訊等重要工廠議題,進行整合與使用,讓工廠資訊即時且透明化。 目前已成功導入台灣化學工業事業體群。

檢視內容

國產化製粒產線智慧整合應用系統

發表年月 2020-09   應用領域 AI製造運用  

應用/研究單位 思納捷科技股份有限公司

有許多傳統產業之生產機台大都是封閉式系統,依賴資深的”老師傅”經驗進行機台參數調校,以維持生產順利與生產品質。 然而面臨智慧製造之機台聯網需求,既有機台升級汰換的高額成本大幅阻礙了傳統產業升級的規劃。 因此,此案例透過採用非侵入式感測技術取得傳統製粒機台的電氣信號、振動信號,並使用AI機器學習演算法來建立機台 協助廠商傳統產業建立「生產機台徵兆訊號擷取與連網建置」、「即時生產資訊可視化平台」及「有機肥製造廠區生產智慧化模組」,以協助業者進行有機肥料的品質優化及達到提升設備稼動率並降低生產與人力監控成本

檢視內容

千金可買早知道 - 設備故障預診斷與健康管理技術

發表年月 2017-08   應用領域 AI製造運用  

應用/研究單位 工業技術研究院服務 巨量資訊科技中心

生產製造公司83%的資訊長認為,設備維護以及總體資產分析最佳化為提升企業競爭力之最主要途徑。「機台故障預診斷」是一套人工智慧(AI)與機器學習的系統,分析機台所產生的製程資料,進行即時監看、預測並以視覺化資料呈現,讓產線管理者可以掌握設備的健康狀態。

檢視內容

AI PHM預兆診斷系統

發表年月 2023-08   應用領域 AI製造運用  

應用/研究單位 PHM/聖森雲端科技

本PHM系統的核心價值在於其能夠精確地預測設備健康狀態與設備的製程狀態,提高生產過程的效率。透過結合IOT、邊緣運算,系統不僅能夠減少算力需求和演算時間,還能夠降低誤判風險,提高模型的遷移性。這項創新技術將為製造業的數位轉型帶來巨大的改變,協助企業實現高效運營和成本降低。

檢視內容

AI智慧缺陷辨識系統-應用於非破壞檢測設備的磁粉探傷解決方案

發表年月 2024-07   應用領域 AI製造運用  

應用/研究單位 美國煉油公司、日本汽車零件製造廠、台灣軍工研發單位等

本系統運用 DeepLabV3 深度學習演算法,建構一套針對保安零件瑕疵辨識的 AI 模型。為提升辨識準確率,開發團隊進行了多種攝影鏡頭與取像環境的測試,共拍攝 1,200 張探傷缺陷影像做為訓練資料,藉此強化模型辨識能力。系統透過筆電連接 RS232 轉 USB 介面,接收啟動指令後,每秒擷取 30 張即時畫面,並對每張影像應用 C1 子項所設計的瑕疵辨識演算法進行判讀,並即時在螢幕上標示出探傷瑕疵部位。整體架構可應用於製造流程的品質控管以及非破壞檢測的磁粉探傷,提升檢測探傷效率化和省人化,協助企業實現智慧缺陷非破壞檢測的探傷解決方案目標精進。

檢視內容