CISA_LOGO

手工具電鍍瑕疵AI視覺檢測

發表年月 2020-04   應用領域 AI製造運用  

應用/研究單位 智炬科技股份有限公司

由於各式瑕疵原因分別在不同製程情境發生,於電鍍後進行判斷較能夠有效提升品質管制效率,需採用全檢模式以肉眼辨識,辨職難度高且高度仰賴人員的經驗,且遺漏比率約10%。透過以AOI自動光學檢測加上深度學習技術,克服金屬扳手反光之特性,提高瑕疵的辨識率(1) 縮短品檢作業時間:透過AOI智慧瑕疵檢測系統,每隻扳手檢測時間自3-4分鐘縮短至約3秒,統計報表由系統自動產出取代過去人工抄寫,且避免篩選遺漏。(2) 老師傅經驗數據化及標準化:依實際檢測數據進行標準差異值統計分析,回饋QC工程標準以優化公差設定值。(3) 生產批及不良品數量整合串接電子看板及MES、SPC系統,提高資訊即時性及加速管理報表產出。

檢視內容

工業3.5升級應用:AI影像識別-品管檢驗機器人

發表年月 2018-01   應用領域 AI製造運用  

應用/研究單位 五百戶科技股份有限公司

AI影像識別機器人可以取代原本大量使用人力進行產品外觀品質檢驗的重複性工作,透過攝影機影像進行識別及精準比對,減少人工作業的可能錯誤或是標準不一的情況,進而提升品質檢驗的良率與效率。 五百戶科技結合了資策會創新研究中心及國立中央大學創新AI應用中心的多年研發能量,開發出具有自建學習比對模型的新一代深度學習架構設計的AI影像識別機器人系統,運用CNN技術+TensorFlow框架,整合動態影像識別技術能力,可以快速建立類神經網路模型,用以精準分類並判斷產品外觀尺寸之優劣,達到近乎100%的精準檢驗結果。

檢視內容

AOI瑕疵檢測快精準、智動複檢更省力

發表年月 2018-06   應用領域 AI製造運用  

應用/研究單位 工業技術研究院 巨量資訊科技中心

隨著電子元件微型化,對檢測設備準確度之要求越來越高,然而現今檢測設備大多仍採取傳統影像處理技術來檢測瑕疵,無法滿足高準確度之需求,為了避免漏檢瑕疵,業者被迫將檢測機台靈敏度調高,其副作用就是造成了大量假瑕疵的產生,使得產線仍須耗費大量人力做二次篩檢,不僅耗費成本,且影響產品品質及生產速度。國內檢測設備業者聯策科技以AI深度學習技術進行真假瑕疵之判定,可協助PCB業者減少一半以上之假瑕疵,促進產線自動化,且以軟帶硬提升設備10倍之價值。

檢視內容

製造業核心痛點:刀具壽命管理 不再miss任何可以切削的機會

發表年月 2019-03   應用領域 AI製造運用  

應用/研究單位 科智企業股份有限公司

AI刀具智慧壽命監控可以將工廠重要議題浮出檯面並予以解決,透過機器數據收集,大量擷取機台資訊創造原始資料庫,科智企業採用人工智慧深度學習(Deep Learning),以及演算法,透過平台整合所有資料來源並精密分析運算後,讓工廠最常出現的耗材「刀具」予以控管,並且知悉刀具使用時間、個別磨耗程度、追蹤管理刀具庫,同時也具備磨耗預警功能,讓使用者能快速掌握工廠加工狀況,以確保所製造出的產品品質以及刀具成本控管。 同時也可以整合科智企業發展的ServCloud,不僅協助自主客戶並能擴大至上下游,整合各個廠域工廠資料,打造智慧供應鏈,也可以將原先廠內的ERP、MES資料進行介接,不浪費企業內部資源。將機台、人員、金流、報工資訊等重要工廠議題,進行整合與使用,讓工廠資訊即時且透明化。目前已成功導入台灣中小事業群體,以及外銷機聯網產品至海外如:泰國、印度、大陸、歐洲等國家。

檢視內容

克服 AI 智慧應用落地挑戰,導入一站式 AIoT 智慧平台,打造智造閉環

發表年月 2021-03   應用領域 AI製造運用  

應用/研究單位 中冠資訊股份有限公司

中冠 AIoT 智慧平台最主要的目的,是要將分散部署在不同電腦的AI應用,整合到同一個Web平臺中,讓員工只要以瀏覽器開啟入口網站,登入帳密,就能一站式管理工廠所有的生產資訊。例如:爐壁厚度監測AI,可透過爐壁探鑽深度與周圍壁面溫度變化的關聯性,訓練AI靠爐壁溫度變化,判斷爐壁厚薄,藉以預測爐壁冷卻元件受損情形,安排檢修時程。爐熱溫度預測AI 則是透過量測出鐵口的鐵水溫度變化,參考操作條件、鐵渣的化性分析,學習預知未來2~4小時的爐熱趨勢,藉此訓練出爐熱預測的AI,若預測到未來爐熱可能下降,就能即時調整生產參數,微調風溫、噴煤量,來維持爐熱的穩定。各 AI 智能應用案例細節,可參閱 https://www.ithome.com.tw/news/142938 報導

檢視內容

及時偵測軸承不良品-產品品質指標預測是關鍵

發表年月 2018-07   應用領域 AI製造運用  

應用/研究單位 工業技術研究院 巨量資訊科技中心

工研院研發產品品質指標預測技術,與軸承製造大廠T公司合作進行軸承加工產線的線上測試,基於機台電力、加工應變力等大數據,透過智慧分析瞭解刀具狀態與工件品質關係,及時偵測NoGo工件,降低損失。並藉由及時調整抽檢頻率,動態配置檢測人力,使傳統離線且需成品完成後的抽檢改為線上即時的全面檢測。

檢視內容

AI智能瑕疵檢測

發表年月 2019-01   應用領域 AI製造運用  

應用/研究單位 奕瑞科技有限公司

奕瑞科技將Deep Learning 演算法極盡所能的在各個領域做出落地的解決方案,除了本身精研的核心演算法之外,還能貼近客戶的需求,與客戶共同討論出最適合的解決方案,並且跟著客戶的SOP,不斷地做滾動式的來回討論,以期用AI 人工智能技術,真正改善客戶在管理上的困難。其解決方案包含解決員工需要監看包商是否違規,交由演算法來判斷,能避免掉人與人之間的摩擦,並且節省了大量的人力監督。另外,AI/AOI 瑕疵檢測也解決了傳統瑕疵檢測過多的誤殺(判)造成現場作業的混亂以及不必要的浪費,AI/AOI能夠制定出容錯空間,讓生產線上的員工(期望篩選標準放寬)以及在辦公室處理客訴的管理或是業務人員(期望篩選標準從嚴)達成最最精準的平衡,並且能夠整合後端自動化生產設備,即時傳送訊號讓機器手臂或是相關設備做出相對應的反應。

檢視內容

工廠專家級系統應用:企業快速導入機器學習的第一哩路

發表年月 2019-06   應用領域 AI製造運用  

應用/研究單位 杰倫智能科技股份有限公司

JWII Automated ML Engine 可協助製造業以合理的成本與快速的導入來建立高價值系統,解決工廠設備異常損失與工程品質不穩定的問題,藉此提升產品品質、生產效能、與達交率,最終達到智動化生產與智慧工廠的目標。 JWII Automated ML Engine已於諸多產業的製造環節中應用,目前已成功導入光電產業、石化產業、PCB產業、電子組裝產業、金屬加工業、設備製造業、表面處理產業、傳統產業…等,提供製程參數異常偵測、生產配方最佳化推薦、連續性製程品質預測、設備故障停機預測、異常因子分析預測…等相關製造業所應用。 JWII Automated ML Engine 可單獨使用,同時也可與企業應用系統整合如ERP、PLM、MES、IOT、WMS、BI…等異質系統中,讓這些系統被賦予AI 預測與診斷等特性,讓相關系統達到智能化的目標。

檢視內容

機械手臂視覺瑕疵偵測解決方案

發表年月 2021-02   應用領域 AI製造運用  

應用/研究單位 海量數位工程股份有限公司

透過AOI人工智慧辨識設備結合機器手臂,改善人工目測檢視產品之誤差,以提升效率。未來將AOI所收集之數據與MES系統所記錄之製造數據對照,可快速發現錯誤數據,改善生產效率。

檢視內容

Flow AOI 智慧自動化AI流體檢測

發表年月 2020-07   應用領域 AI製造運用  

應用/研究單位 FlowVIEW 邑流微測

我們瞭解在零件清洗的製程當中,去離子水的潔淨度至關重要, 就讓 FlowVIEW 協助您掌握最精準的微粒子監控數據! FlowVIEW 使用最新的雷射感測技術,搭配超精密的多通流道, 用心研發出專為可靠性設計的<全自動多通道粒子檢測系統>。 可完美整合到您的設備當中,是為汙染管控的理想產品。 以1µm的靈敏度搭配每分鐘30ml的流速, <全自動多通道粒子檢測系統>可24小時不間斷地分析水質並即時回傳數據。 使用者可輕鬆判讀微粒子數量的變化,有效監控水質與處理槽系統狀態, 大幅提升零件清洗製程的效率。

檢視內容

Tukey Service - 預防非計畫性停機系統

發表年月 2021-02   應用領域 AI製造運用  

應用/研究單位 Chimes AI 詠鋐智能股份有限公司

由 Chimes AI 詠鋐智能所開發的無程式碼(No-Code)模型生命週期管理平台 Tukey,作為核心引擎,幫助最熟悉機台狀況的設備保養工程師,彈性的調用Tukey內建或是企業投資開發的演算法,建置設備監診 AI 模型。機台設備可根據AI 模型建立設備性能曲線,設備保養工程師可根據此設備性能曲線,監控全廠設備運行狀況。系統根據性能指標預先反應設備衰退現象,經由系統判斷風險等級,協助保修人員安排計畫性維修,提高設備稼動率,延長設備服務年限,有效的降低工安意外災害。

檢視內容

半導體光學鏡片製程AI品質檢測系統

發表年月 2020-09   應用領域 AI製造運用  

應用/研究單位 思納捷科技股份有限公司

因應全球智慧製造發展趨勢,加速國內高精密光學邁向智慧製造時代,本應用發展能源稼動管理機制依據研拋製程情況,透過遠端監測設備狀態、預知保養,以降低設備人力維護成本需同時收集廠區設備變壓器運轉時之溫度、電壓、電流等諸元,即時提供故障因應對策、變壓器剩餘壽命診斷,從能源資料、設備機台到智慧預警,提出流程改善規劃,以達到整體生產力提升的目的。

檢視內容

生產排程規劃

發表年月 2020-01   應用領域 AI製造運用  

應用/研究單位 民邦資訊服份有限公司 / 雲那裡產業智能

客製化程度高的製造業極難採用全自動化製程的工具,因此主要的生產資源往往是可以因應產品變化的「人力」並輔以高效率工具以提升生產力因此形成以人力為核心的「工作站」生產模式,從而形成本案例所稱之工作站式製造環境,透過產品種類、生產製程、訂單需求、生產力等資料確立利用AI最佳化模型及技術尋求最佳生產排程結果。

檢視內容

智能視覺檢測:AI勤學老師傅,品質檢測快狠準

發表年月 2020-09   應用領域 AI製造運用  

應用/研究單位 鼎新電腦股份有限公司

當無法明確規範產品瑕疵檢測標準時,很多企業往往必須藉由老師傅的經驗進行人工檢測以確保出貨品質,也因此面臨檢測速度緩慢、人工缺乏及老師傅凋零的痛點。智能視覺檢測系統是基於視覺檢測監控設備所累積的大量品質檢測圖形及影像進行分析,根據老師傅的經驗自動學習能判斷產品合格與否的視覺特徵,協助製造業建立AI品質檢測模型,自動快速地對產品進行媲美老師傅的檢測,永續確保產品出貨的品質。鼎新電腦的「大人物」部門具備研發整合「大數據、人工智慧、物聯網」各式應用的能力,能夠為企業分析需求並量身打造適合的人工智慧應用。智能視覺檢測系統的核心技術是結合機器視覺與深度學習對大量的圖形影像進行處理及分析,並藉由與客戶的領域專家持續互動找出視覺檢測測熱區及特徵,最後建立可視化之AI品質檢測模型,進而提升整體出貨品質。

檢視內容

AI布料花色檢索系統

發表年月 2019-09   應用領域 AI製造運用  

應用/研究單位 光禾感知科技有限公司

AI布料花色檢索系統透過數位留樣系統拍照,以AI分類識別,定義不同布料材質、顏色與圖樣款式,在將數種物理特性轉化為數位化資料保存下,開發出數位化織品色彩及花色管理平台,這樣的概念類似於搜索引擎,紡織廠可以透過平台快速檢核庫存及過往記錄中最接近的色樣,以顏色及花紋識別,結合光照系統及色彩管理技術,制定紡織產業在庫存管理、數位資料庫、及產品 QC 的檢核標準,減少在打樣及確認上的時間及人力成本,同時減少人因誤差。

檢視內容