TISSA_LOGO

驅動全世界的精密小鋼珠‒以預測與健康管理技術提升產品品質

發表年月 2021-05   應用領域 AI製造運用  

應用/研究單位 機智雲股份有限公司 / 逢甲大學張淵仁智慧機械與系統實驗室

案例‒鋼珠製造產業長期以來面臨產品種類眾多、尺寸規格複雜、客戶經常性改單導致生產線產能分配不均、工裝次數頻繁、磨盤異常損壞增加等問題,造成工廠生產效率不佳。鋼珠製造流程從原物料的線材、鍛造到形成鋼珠的粗研磨、熱處理、細研磨、精研磨,最後為成品的洗淨、檢驗和全檢;其中主要的瓶頸為粗研磨至精研磨的關鍵三道研磨製程。其原因為鋼珠在研磨過程無法即時監控磨盤的狀況,容易造成堵溝、尺寸變異,嚴重時將造成磨盤崩裂而傷及鋼珠的完整性,若因人員的疏失造成規值的錯誤,不但造成產能的損失且增加成品久置而生鏽的可能性,增加產品重製的加工成本及工廠的產品產出時間(cycle time)。

檢視內容

及時偵測軸承不良品-產品品質指標預測是關鍵

發表年月 2018-07   應用領域 AI製造運用  

應用/研究單位 工業技術研究院 巨量資訊科技中心

工研院研發產品品質指標預測技術,與軸承製造大廠T公司合作進行軸承加工產線的線上測試,基於機台電力、加工應變力等大數據,透過智慧分析瞭解刀具狀態與工件品質關係,及時偵測NoGo工件,降低損失。並藉由及時調整抽檢頻率,動態配置檢測人力,使傳統離線且需成品完成後的抽檢改為線上即時的全面檢測。

檢視內容

鋼胚收料智慧影像辨識系統

發表年月 2024-10   應用領域 AI製造運用  

應用/研究單位 中鴻鋼鐵

此專案的目標是開發一個基於人工智慧和機器學習技術的鋼胚收料電子化 與鋼胚表面影像辨識系統,此專案能夠在鋼胚收料時透過人工智慧的系統將資 訊電子化,並透過影像辨識準確地檢測鋼胚表面的缺陷、異常和鏽蝕。透過這 樣的系統,我們希望能夠實現以下目標:A. 提高生產線上的檢測效率和準確性;B. 減少人力成本和檢測錯誤;C. 改善產品質量並提高客戶滿意度;D. 提高生產過程的安全性和可追溯性。

檢視內容

國產化製粒產線智慧整合應用系統

發表年月 2020-09   應用領域 AI製造運用  

應用/研究單位 思納捷科技股份有限公司

有許多傳統產業之生產機台大都是封閉式系統,依賴資深的”老師傅”經驗進行機台參數調校,以維持生產順利與生產品質。 然而面臨智慧製造之機台聯網需求,既有機台升級汰換的高額成本大幅阻礙了傳統產業升級的規劃。 因此,此案例透過採用非侵入式感測技術取得傳統製粒機台的電氣信號、振動信號,並使用AI機器學習演算法來建立機台 協助廠商傳統產業建立「生產機台徵兆訊號擷取與連網建置」、「即時生產資訊可視化平台」及「有機肥製造廠區生產智慧化模組」,以協助業者進行有機肥料的品質優化及達到提升設備稼動率並降低生產與人力監控成本

檢視內容

工業3.5升級應用:AI影像識別-品管檢驗機器人

發表年月 2018-01   應用領域 AI製造運用  

應用/研究單位 五百戶科技股份有限公司

AI影像識別機器人可以取代原本大量使用人力進行產品外觀品質檢驗的重複性工作,透過攝影機影像進行識別及精準比對,減少人工作業的可能錯誤或是標準不一的情況,進而提升品質檢驗的良率與效率。 五百戶科技結合了資策會創新研究中心及國立中央大學創新AI應用中心的多年研發能量,開發出具有自建學習比對模型的新一代深度學習架構設計的AI影像識別機器人系統,運用CNN技術+TensorFlow框架,整合動態影像識別技術能力,可以快速建立類神經網路模型,用以精準分類並判斷產品外觀尺寸之優劣,達到近乎100%的精準檢驗結果。

檢視內容

IDI+ AI Platform

發表年月 2019-02   應用領域 AI製造運用  

應用/研究單位 人工智能、智慧製造、製程生管、品質保養、SCM分析人員、行銷分析人員、生產管理人員、財務預測分析師、製程與研發人員、資料科學家

Dataset Acquire資料匯入整合管理、Dataset Reprocessing 資料前處理與作業、Dataset Understanding資料理解與分析、Data Labeling資料標記輔助系統、Model Generator模型設計、Auto deployment自動發佈模型

檢視內容

智慧導航服務機器人 (iAGV),理貨分貨真輕鬆

發表年月 2018-06   應用領域 AI製造運用  

應用/研究單位 工業技術研究院服務系統科技中心

智慧導航服務機器人 (iAGV)應用深度攝影智慧影像辨識技術與智動化科技、超音波感測技術,以Edge Computing快速反應為基礎,透過不同深度差找出特徵差異點因應不同工作環境需求之多元化定位,內建數量核對的AI揀貨同時進行數量核對,並具備「動線最適化」及「壅塞避免」的動線運算引擎,大幅提升作業效率,並獲得2018資訊月百大創新產品。工研院服科中心「iAGV智慧導航服務機器人 」突破天花板特徵深度辨識透過不同深度差找出特徵差異點,以導航整合天花板特徵深度辨識定位、導航、避障、定位等功能直接進行優化,以Edge Computing控制導航/定位模式的調整、地圖建立邏輯改良及行走控制等的動作。以低成本為考量採用簡易單晶片控制伺服馬達,並搭配低成本之影像導引裝置,達成符合業界需求價格的產品。並可機器人到貨架取貨,減少人行走道貨物能夠更緊密地存放,同時,省去員工走到貨架、取貨時間,讓出貨更有效率,節省理貨25%工時、減少人員移動距離35%與成本15%,滿足B2B、B2C等多型態發貨中心需求,並成功導入宅配物流業、資訊消費性電子產品發貨中心…等國內業者。

檢視內容

AI智慧缺陷辨識系統-應用於非破壞檢測設備的磁粉探傷解決方案

發表年月 2024-07   應用領域 AI製造運用  

應用/研究單位 美國煉油公司、日本汽車零件製造廠、台灣軍工研發單位等

本系統運用 DeepLabV3 深度學習演算法,建構一套針對保安零件瑕疵辨識的 AI 模型。為提升辨識準確率,開發團隊進行了多種攝影鏡頭與取像環境的測試,共拍攝 1,200 張探傷缺陷影像做為訓練資料,藉此強化模型辨識能力。系統透過筆電連接 RS232 轉 USB 介面,接收啟動指令後,每秒擷取 30 張即時畫面,並對每張影像應用 C1 子項所設計的瑕疵辨識演算法進行判讀,並即時在螢幕上標示出探傷瑕疵部位。整體架構可應用於製造流程的品質控管以及非破壞檢測的磁粉探傷,提升檢測探傷效率化和省人化,協助企業實現智慧缺陷非破壞檢測的探傷解決方案目標精進。

檢視內容

AI航燃靜電消散劑添加量優化系統提供人員作業依據 確保運送作業安全

發表年月 2023-09   應用領域 AI製造運用  

應用/研究單位 科智企業股份有限公司

AI航燃靜電消散劑添加量優化系統,透過大量感測器資料數據收集創造原始資料庫,科智企業採用人工智慧深度學習(Deep Learning),以及演算法,透過MusesAI平台整合所有資料來源並精密分析運算後,即時監控工廠油槽靜電穩定度,提升出油槽量導電度之穩定性,協助改善客戶端現有之航燃靜電消散劑添加量優化之依據,讓使用者能快速掌握油槽狀況,以確保運送過程安全。 同時也可以整合科智企業發展的ServCloud,不僅協助自主客戶並能擴大至上下游,整合各個廠域工廠資料,打造智慧供應鏈,也可以將原先廠內的ERP、MES資料進行介接,不浪費企業內部資源。將機台、人員、金流、報工資訊等重要工廠議題,進行整合與使用,讓工廠資訊即時且透明化。 目前已成功導入台灣化學工業事業體群。

檢視內容

AI智慧瑕疵檢測-織造業者織帶檢測

發表年月 2020-11   應用領域 AI製造運用  

應用/研究單位 巨鷗科技股份有限公司

因現場操作人員無法兼顧所有機台確認狀況,當織帶編織錯誤時, 需到最後品管包裝才能確認錯誤,現場機台編織織帶60~70碼/時,會造成相當長度的損失。 當織帶會遇到明顯不良包括脫線、預計導入鞋帶工廠織帶良率檢測系統改善品管流程提前修正錯誤降低材料耗損。

檢視內容

AI決策時代來臨!瑕疵檢測不再靠眼力,AI驅動AOI打造零缺陷智慧產線

發表年月 2025-11   應用領域 AI製造運用  

應用/研究單位 魔幣雲公司

本案AI瑕疵檢測系統採用模組化AI影像辨識架構,能依不同產線或產品特性快速調整應用模組,例如CNC加工瑕疵檢測、安全帽佩戴偵測等場域皆可靈活部署。系統具備參數化模型調控設計,可依產品規格設定辨識閾值與容許範圍,使用者能於後台即時調整以對應不同製程條件。透過邊緣運算技術結合高速工業相機與Jetson模組,系統可在0.3秒內完成瑕疵辨識與信心值判定,並自動回傳訊號至PLC進行不良品標示。此外,系統具備跨場域資料遷移學習能力,能根據既有標註資料快速微調模型,以降低重複建模成本。導入前提供POC原型驗證流程,讓客戶能於實際產線測試辨識成效與操作介面,確保後續開發更貼近實務需求。部署上採低門檻模組化設計,可透過月租或授權模式導入,提升企業導入意願。系統上線後提供模型再訓練、參數微調與遠端維運機制,確保AI辨識能力能隨產線變化持續優化,達成長期穩定運行與智慧製造轉型目標。

檢視內容

工廠專家級系統應用:企業快速導入機器學習的第一哩路

發表年月 2019-06   應用領域 AI製造運用  

應用/研究單位 杰倫智能科技股份有限公司

JWII Automated ML Engine 可協助製造業以合理的成本與快速的導入來建立高價值系統,解決工廠設備異常損失與工程品質不穩定的問題,藉此提升產品品質、生產效能、與達交率,最終達到智動化生產與智慧工廠的目標。 JWII Automated ML Engine已於諸多產業的製造環節中應用,目前已成功導入光電產業、石化產業、PCB產業、電子組裝產業、金屬加工業、設備製造業、表面處理產業、傳統產業…等,提供製程參數異常偵測、生產配方最佳化推薦、連續性製程品質預測、設備故障停機預測、異常因子分析預測…等相關製造業所應用。 JWII Automated ML Engine 可單獨使用,同時也可與企業應用系統整合如ERP、PLM、MES、IOT、WMS、BI…等異質系統中,讓這些系統被賦予AI 預測與診斷等特性,讓相關系統達到智能化的目標。

檢視內容

半導體光學鏡片製程AI品質檢測系統

發表年月 2020-09   應用領域 AI製造運用  

應用/研究單位 思納捷科技股份有限公司

因應全球智慧製造發展趨勢,加速國內高精密光學邁向智慧製造時代,本應用發展能源稼動管理機制依據研拋製程情況,透過遠端監測設備狀態、預知保養,以降低設備人力維護成本需同時收集廠區設備變壓器運轉時之溫度、電壓、電流等諸元,即時提供故障因應對策、變壓器剩餘壽命診斷,從能源資料、設備機台到智慧預警,提出流程改善規劃,以達到整體生產力提升的目的。

檢視內容

利用基因演算法提升紡織業生產排程模擬平台

發表年月 2021-03   應用領域 AI製造運用  

應用/研究單位 漢門科技股份有限公司

受到快時尚及網路購物風潮影響,品牌客戶對即時且準確供貨之要求越趨嚴謹。建構網實智能化製造、生產、銷售系統,以快速反應或預測市場需求,產業供應鏈垂直與水平數位化、智能化,成為全球搶單競爭關鍵。在缺乏即時內外部資訊整合條件下,每次決策都在考驗高層主管的智慧與運氣,常備原料採購時機錯誤就可能導致公司訂單賠錢,生產決策錯誤就可能導致需要空運才能達交,昂貴的空運費即大幅抵銷了訂單利潤。利用基因演算法+資源限制分類,並整合訂單、排程及產能,模擬生產排程資訊提供給廠長決策參考。此一應用可最佳化安排生產,減少瓶頸問題,提高物料供應精準度,減少停工待料的問題。

檢視內容

神通AI專利-MiSeeR故障預測與異常檢測系統

發表年月 2021-10   應用領域 AI製造運用  

應用/研究單位 神通資訊科技股份有限公司

為了因應未來高爾夫球國際市場競爭力及產能的需求,有別於舊廠以傳統分站式產線代工製造高爾夫球,製程多採人工作業方式進行,致使產能有限、營收受限;新建置”明揚二廠”一條流水式自動高爾夫球產線,進行感測器加裝與機台聯網,導入智慧化之供應鏈整合平台串流上下游廠商的即時資訊回饋,提供供需二端線上詢價採購、維修預知、報價出貨之自動快速回覆的e化流程,並導入供應商管理存貨(VMI)模式,生產製程設備安裝感測器及聯網,以及數據蒐集與分析、參數調機、異況通知、預知保修與AOI智慧品檢等,讓回覆的速度加快、反應的時效縮短、生產更為順暢、訊息完全透通,確保產製過程中供料穩定、交期準確及產品合格,並且在資訊通透下減少了交易成本與流程時間。並於品檢端規劃與導入機器視覺、AI人工智慧及深度學習進行高爾夫球之瑕疵檢測,提升球體表面全檢速度、機器參數設定的最適(佳)化,以利提供一快速流暢的生產流程、提升產能與速度。

檢視內容