CISA_LOGO

驅動全世界的精密小鋼珠‒以預測與健康管理技術提升產品品質

發表年月 2021-05   應用領域 AI製造運用  

應用/研究單位 機智雲股份有限公司 / 逢甲大學張淵仁智慧機械與系統實驗室

案例‒鋼珠製造產業長期以來面臨產品種類眾多、尺寸規格複雜、客戶經常性改單導致生產線產能分配不均、工裝次數頻繁、磨盤異常損壞增加等問題,造成工廠生產效率不佳。鋼珠製造流程從原物料的線材、鍛造到形成鋼珠的粗研磨、熱處理、細研磨、精研磨,最後為成品的洗淨、檢驗和全檢;其中主要的瓶頸為粗研磨至精研磨的關鍵三道研磨製程。其原因為鋼珠在研磨過程無法即時監控磨盤的狀況,容易造成堵溝、尺寸變異,嚴重時將造成磨盤崩裂而傷及鋼珠的完整性,若因人員的疏失造成規值的錯誤,不但造成產能的損失且增加成品久置而生鏽的可能性,增加產品重製的加工成本及工廠的產品產出時間(cycle time)。

檢視內容

數位分身模擬軟體開發

發表年月 2022-11   應用領域 AI製造運用  

應用/研究單位 優智能股份有限公司

透過人工智慧演算法來實現 (1) 工程師的調校經驗系統化及 (2) 調校結果的量化分析,幫助專業工程師在更短時間找出更佳的參數組合。此工具初期是以人機協作的方式運行,隨著智慧系統在過程中不斷自動學習最終可達到產品模型參數的全自動調校。

檢視內容

克服 AI 智慧應用落地挑戰,導入一站式 AIoT 智慧平台,打造智造閉環

發表年月 2021-03   應用領域 AI製造運用  

應用/研究單位 中冠資訊股份有限公司

中冠 AIoT 智慧平台最主要的目的,是要將分散部署在不同電腦的AI應用,整合到同一個Web平臺中,讓員工只要以瀏覽器開啟入口網站,登入帳密,就能一站式管理工廠所有的生產資訊。例如:爐壁厚度監測AI,可透過爐壁探鑽深度與周圍壁面溫度變化的關聯性,訓練AI靠爐壁溫度變化,判斷爐壁厚薄,藉以預測爐壁冷卻元件受損情形,安排檢修時程。爐熱溫度預測AI 則是透過量測出鐵口的鐵水溫度變化,參考操作條件、鐵渣的化性分析,學習預知未來2~4小時的爐熱趨勢,藉此訓練出爐熱預測的AI,若預測到未來爐熱可能下降,就能即時調整生產參數,微調風溫、噴煤量,來維持爐熱的穩定。各 AI 智能應用案例細節,可參閱 https://www.ithome.com.tw/news/142938 報導

檢視內容

AI 智能自動光學檢測技術

發表年月 2016-04   應用領域 AI製造運用  

應用/研究單位 智合科技有限公司

智合科技的研發團隊 採用最新人工智慧深度學習(Deep Learning) 並結合 AOI 技術, 可進行 不規則形狀物件的品質評估:使用 AI 物件偵測, 然後再透過 AOI 進行 2D 資訊計算, 產生評估數據 例如:農業產品 / 不易數據化的物件 / 非標準品的測量 / 2D 與 3D 的數據呈現 不易測量的物件:使用 AI 的技術, 針對邊緣影像的準確度進行推估, 確保整體的檢測數據的信賴性 例如:高精密度金屬加工物件的邊緣值 另外可透過 嵌入式邊緣計算平台, 進行上述技術的整合, 有效降低整體系統的建置成本

檢視內容

AI自動光學檢測

發表年月 2022-06   應用領域 AI製造運用  

應用/研究單位 智合科技股份有限公司

應用一系統功能為鑽石磨棒雷射加工點的3D測量,因鑽石反光率高,故無法使用雷射測量儀,本公司的研發團隊透過人工智慧機器視覺方式進行高精度測量,解決高變異性製品在雷射加工時需人工操作的痛點, 進而達到全自動化生產的目標,大幅減少人事成本,並且提升生產良率。應用二設備功能為使用 AI檢測收集合乎客戶規範的工業鑽石 (砂 ),挑選後鑽石最終成品為鑽石碟,由於鑽石極小,大小約為400微米且晶型變化大,因此無法用人眼挑出瑕疵品,本公司透過AI機器視覺方式進行影像分類並使用低成本嵌入式系統進行瑕疵檢測,同時降低了設備的製造成本與客戶的原料成本。智合科技的研發團隊結合人工智慧(AI)與光學辨識系統(AOI),在了解客戶的產品、作業流程及需求後,提出最適、最佳的設計及產品,讓客戶以最適預算取得最佳解決方案,產品應用範圍跨越眾多領域。

檢視內容

AI-AOI 基於深度學習之光學檢測解決方案

發表年月 2016-06   應用領域 AI製造運用  

應用/研究單位 慧穩科技股份有限公司

輔導客戶運用AI、深度學習結合客戶Domain Know-how,進行資料收集、資料前處理、轉換與分析並建立AI訓練與驗證模型,提供完整AI之解決方案,並協助客戶導入AI正循環。透過IoT(Internet of Things)或工業相機將資料彙整並AI、深度學習訓練,隨後可達AI之預測。應用:AOI(Automated Optical Inspection)、工業自動化、智慧工廠、客製化服務

檢視內容

神通AI+AOI,有效鑑別良品,減少60%人工復判需求

發表年月 2021-03   應用領域 AI製造運用  

應用/研究單位 神通資訊科技股份有限公司

以one-class learning之學習架構,導入AOI (Automated optical inspection)檢測瑕疵智慧化發展,在自動化條件下提升產品檢測辨識率,以減少人力工作負重量,包含兩部份工作,一、建立以Autoencoder與self-organizing maps為基礎之瑕疵檢測技術,並完成廠商提供實際AOI機台資料之瑕疵檢測技術測試;二、完成廠商現場機台系統整合與資料介接,將影像資料透過AOI系統之接口導入部署分析技術之邊緣運算裝置,再將分析結果傳回AOI系統中,於介面上顯示瑕疵區域。主要利用python撰寫建立影像辨識軟體,其同時具備了影像前處理功能,例如:高斯慮波(Gaussian Filtering)、均值模糊(Averaging Blur)、中值模糊(Median Blur)、雙邊濾波(Bilateral Filter)且包含分析功能與可提供數據可視化及存儲之後處理功能。使用本分析軟體可直接將原始照片進行進階分析,由預前訓練模型直接辨識產品的相片是否有無缺陷,可調控參數設定靈敏度以及協助執行品管。

檢視內容

千金可買早知道 - 設備故障預診斷與健康管理技術

發表年月 2017-08   應用領域 AI製造運用  

應用/研究單位 工業技術研究院服務 巨量資訊科技中心

生產製造公司83%的資訊長認為,設備維護以及總體資產分析最佳化為提升企業競爭力之最主要途徑。「機台故障預診斷」是一套人工智慧(AI)與機器學習的系統,分析機台所產生的製程資料,進行即時監看、預測並以視覺化資料呈現,讓產線管理者可以掌握設備的健康狀態。

檢視內容

手工具電鍍瑕疵AI視覺檢測

發表年月 2020-04   應用領域 AI製造運用  

應用/研究單位 智炬科技股份有限公司

由於各式瑕疵原因分別在不同製程情境發生,於電鍍後進行判斷較能夠有效提升品質管制效率,需採用全檢模式以肉眼辨識,辨職難度高且高度仰賴人員的經驗,且遺漏比率約10%。透過以AOI自動光學檢測加上深度學習技術,克服金屬扳手反光之特性,提高瑕疵的辨識率(1) 縮短品檢作業時間:透過AOI智慧瑕疵檢測系統,每隻扳手檢測時間自3-4分鐘縮短至約3秒,統計報表由系統自動產出取代過去人工抄寫,且避免篩選遺漏。(2) 老師傅經驗數據化及標準化:依實際檢測數據進行標準差異值統計分析,回饋QC工程標準以優化公差設定值。(3) 生產批及不良品數量整合串接電子看板及MES、SPC系統,提高資訊即時性及加速管理報表產出。

檢視內容

國產化製粒產線智慧整合應用系統

發表年月 2020-09   應用領域 AI製造運用  

應用/研究單位 思納捷科技股份有限公司

有許多傳統產業之生產機台大都是封閉式系統,依賴資深的”老師傅”經驗進行機台參數調校,以維持生產順利與生產品質。 然而面臨智慧製造之機台聯網需求,既有機台升級汰換的高額成本大幅阻礙了傳統產業升級的規劃。 因此,此案例透過採用非侵入式感測技術取得傳統製粒機台的電氣信號、振動信號,並使用AI機器學習演算法來建立機台 協助廠商傳統產業建立「生產機台徵兆訊號擷取與連網建置」、「即時生產資訊可視化平台」及「有機肥製造廠區生產智慧化模組」,以協助業者進行有機肥料的品質優化及達到提升設備稼動率並降低生產與人力監控成本

檢視內容

預防性維護/肇因分析

發表年月 2022-11   應用領域 AI製造運用  

應用/研究單位 優智能股份有限公司

針對生產資料缺漏及衍生之後續產生的分析誤判,我們用 AI 工具來進行資料修補,確保資料完整性之後,再以另一 AI 工具進行快速的異常篩檢。我們將以上兩項功能和資料視覺化工具整合成可擴充功能的系統平台,便於根據使用者需求新增或調整功能。

檢視內容

AI智能瑕疵檢測

發表年月 2019-01   應用領域 AI製造運用  

應用/研究單位 奕瑞科技有限公司

奕瑞科技將Deep Learning 演算法極盡所能的在各個領域做出落地的解決方案,除了本身精研的核心演算法之外,還能貼近客戶的需求,與客戶共同討論出最適合的解決方案,並且跟著客戶的SOP,不斷地做滾動式的來回討論,以期用AI 人工智能技術,真正改善客戶在管理上的困難。其解決方案包含解決員工需要監看包商是否違規,交由演算法來判斷,能避免掉人與人之間的摩擦,並且節省了大量的人力監督。另外,AI/AOI 瑕疵檢測也解決了傳統瑕疵檢測過多的誤殺(判)造成現場作業的混亂以及不必要的浪費,AI/AOI能夠制定出容錯空間,讓生產線上的員工(期望篩選標準放寬)以及在辦公室處理客訴的管理或是業務人員(期望篩選標準從嚴)達成最最精準的平衡,並且能夠整合後端自動化生產設備,即時傳送訊號讓機器手臂或是相關設備做出相對應的反應。

檢視內容

AI軟體以一擋百,助攻企業視覺檢測不漏接

發表年月 2019-07   應用領域 AI製造運用  

應用/研究單位 Memorence AI

憶象智能影像辨識系統可以協助客戶三大方向:一提升營業額:為提高生產品質,將人工辨識的產品不良率, 藉由AI智能辨識提升產品的良率;二,降低成本:從需要大量人工的目檢辨識工作,轉由AI辨識降低錯誤節省人力, 提高生產效能,三,企業專業知識管理:縮減教育訓練時程/預防專業知識的斷層(師傅退休/跳槽)。憶象智能影像辨識系統採用最先進的深度學習之捲積神經網路(convolutional neural networks, CNNs)與電腦視覺技術,團隊具備開發AI模型設計與系統開發能力,設計出符合應用單位的AI模型,產出最符合應用客戶之檢測模型, 讓使用者可明顯獲得差異性的產品成效新體驗。 憶象智能影像辨識系統整合客戶檢測產品之圖像管理與標記,AI模型,即時統計,一站式的服務幫助企業檢視各生產鏈的問題點, 及優化備料與生產裝置設定。憶象智能影像辨識系統可以應用於各種產業的生產線應用,目前已成功導入電子業、傳統製造業、健康醫療…等,提供工廠與生產線之智慧視覺辨識應用。

檢視內容

全方位3D智慧自動化極光設備

發表年月 2019-03   應用領域 AI製造運用  

應用/研究單位 大氣電漿股份有限公司

3D空氣極光表面改質系統,使用結構光深度視覺掃瞄,具速度快、精度高,可即時掃瞄生成路徑,進行極光表面改質,適用於各種形狀及材質,無需事先進行任何設定。此應用對於中小企業或傳統產業,非常的重要,雖然多關結式的機器手臂最接近人體的結構,使用上相對靈活,很適合應用在少量多樣的製造。但這種機器人在設定及操作上也相對的複雜,所以一般的中小企業或傳統產業,極少有能力可以設定及撰寫多關結式機器人的程式,加上要收集手臂上的數據完全是難上加難,造成產業升級、彈性製造都淪為空談。 我司自主研發的極光表面改質系統,在異質接合上改善傳統製程上的污染,以鞋業為例:原本橡膠和EVA的接合,需要打磨、酸鹼洗、烘乾、處理劑、膠水等步驟,其中會產水和空氣的污染,造成企業成本上升、居民抗議、環境負擔。但如果使用我司的極光表面改質系統,橡膠與EVA的結合,製程上會改成清水洗、烘乾、極光處理、水膠接合。不但工序減少、產能提升,更重要的是與傳統製程相比,至少減少99%的環境污染,而達成企業、消費者、地球 三贏的局面。

檢視內容

AI銷售預測,內部提升[精準備料]智能化,對外轉變服務思維

發表年月 2020-04   應用領域 AI製造運用  

應用/研究單位 智炬科技股份有限公司

(1)初始透過訪談產業專家確定預測需求及影響產品銷售預測之關鍵變數(例如季節,品項大類,淡旺季..等) 。 (2)進行資料擷取、資料清洗、資料整理與資料整理等前置程序。 (3)而後基於數量分析流程,進行描述性統計分析、相關性分析等步驟,以確認變數及其關聯性。 (4)透過銷售預測的模型建立,直接成效反映在備料精確度及人員溝通效率提升,並提升初次合作的高質量客戶滿意度,達成高需求量判斷兌現率。 (5)模型曲線置入缺料預警戰情,提早指示/警示/預警,以報表/移動平台/戰情看板/即時通訊軟體…等呈現,拉動供應商,降低無效追料損耗。 (6)資料來源為ERP/MES,銷售預測與排程系統整合,動態模擬調整庫存水位,因應少量多樣需求,降低庫存呆料, 滿足達交,體現企業提升毛利。 (7)數據歸納出模型後,不需大量,也具參考,只須持續數據量與驗證,提高精準度,強化企業體質,降低人為干預,以數據智能面向市場。 (8)數位優化/世代交替/新冠疫情過後,客戶及供應商重新洗牌,產業高值轉型,跨足新市場,爭取新客人,都須仰賴數據驅動思考變革的方向。 (9) AI 銷售預測可以應用於ODM/OBM/自有品牌製造業。

檢視內容