TISSA_LOGO

利用基因演算法提升紡織業生產排程模擬平台

發表年月 2021-03   應用領域 AI製造運用  

應用/研究單位 漢門科技股份有限公司

受到快時尚及網路購物風潮影響,品牌客戶對即時且準確供貨之要求越趨嚴謹。建構網實智能化製造、生產、銷售系統,以快速反應或預測市場需求,產業供應鏈垂直與水平數位化、智能化,成為全球搶單競爭關鍵。在缺乏即時內外部資訊整合條件下,每次決策都在考驗高層主管的智慧與運氣,常備原料採購時機錯誤就可能導致公司訂單賠錢,生產決策錯誤就可能導致需要空運才能達交,昂貴的空運費即大幅抵銷了訂單利潤。利用基因演算法+資源限制分類,並整合訂單、排程及產能,模擬生產排程資訊提供給廠長決策參考。此一應用可最佳化安排生產,減少瓶頸問題,提高物料供應精準度,減少停工待料的問題。

檢視內容

智能視覺檢測:AI勤學老師傅,品質檢測快狠準

發表年月 2020-09   應用領域 AI製造運用  

應用/研究單位 鼎新電腦股份有限公司

當無法明確規範產品瑕疵檢測標準時,很多企業往往必須藉由老師傅的經驗進行人工檢測以確保出貨品質,也因此面臨檢測速度緩慢、人工缺乏及老師傅凋零的痛點。智能視覺檢測系統是基於視覺檢測監控設備所累積的大量品質檢測圖形及影像進行分析,根據老師傅的經驗自動學習能判斷產品合格與否的視覺特徵,協助製造業建立AI品質檢測模型,自動快速地對產品進行媲美老師傅的檢測,永續確保產品出貨的品質。鼎新電腦的「大人物」部門具備研發整合「大數據、人工智慧、物聯網」各式應用的能力,能夠為企業分析需求並量身打造適合的人工智慧應用。智能視覺檢測系統的核心技術是結合機器視覺與深度學習對大量的圖形影像進行處理及分析,並藉由與客戶的領域專家持續互動找出視覺檢測測熱區及特徵,最後建立可視化之AI品質檢測模型,進而提升整體出貨品質。

檢視內容

製造業GenAI專家問答決策系統

發表年月 2025-11   應用領域 AI製造運用  

應用/研究單位 QAMSTAR TECHNOLOGY CO., LTD

整合產線運行資料與專業技術人員標記的品質資訊,建立可用於知識理解與語意推論的數據基礎。透過 Embedding 技術,將包含環境感測參數(如:溫溼度)、品質預測(如:LSTM 預測濾網更換等)、設備稼動狀態與製程事件記錄等原始資料轉換為高維語意向量,提供語言模型進行語意匹配與問題解答的依據。 系統搭配 LLAMA 3 語言模型,可接收來自使用者的自然語言提問(User Prompt)與系統提示(System Prompt),並結合語意向量進行推論。為提升回答的實用性與準確度,系統可根據回應結果的品質,動態調整 Embedding 模組的權重參數,使模型更貼近鑄造領域的語境與判斷邏輯,逐步優化回應品質。

檢視內容

多模態生成式AI用於汽車再製造零件辨識

發表年月 2023-10   應用領域 AI製造運用  

應用/研究單位 BerkeleyStandard

汽車零件再製造工廠每年要生產的型號會跟著二手市場變化,以傳動箱來說,市面上最常見的二手零件不會超過500種,但每年都會淘汰最老的50種,同時增加新的50種。如果將每個零件拿去不同角度和不同背景拍攝,每種傳動箱大約要拍攝1000張訓練張影像,要讓傳統的物件分類AI持續每年學習,每年都要準備50000張訓練影像,透過生成式AI,客戶願意每年針對50種零件掃描建模,訓練出來的辨識器可以幫助再製造工廠辨識現場的原料,協助原料管控同時,也可以降低採購在零售商的溝通成本。

檢視內容

AI智慧製造解決方案-工廠設備預知保養

發表年月 2023-08   應用領域 AI製造運用  

應用/研究單位 國內製造業石化產業

基於設備大數據的預測性維護與診斷 AVEVA PRiSM的APR技術 (Advanced Pattern Recognition先進模式識別),將設備的實時運行數據同其特有運行模式進行比對,發現系統行爲的細微差異,從而對設備可能存在的問題進行提前預警,實現對設備的預測性維護。早於傳統報警系統數天、數周或數月進行預警 傳統的警告方式為設定上、下界限,但PRiSM是以點的周圍來計算,利用演算法建立一個正常的模式,當實際值和預測值之間的偏差超過允許的限制時進行預先報警。

檢視內容

智慧水廠 - AI優化之水處理智能操作指引

發表年月 2025-11   應用領域 AI製造運用  

應用/研究單位 新鼎系統股份有限公司

透過AI多變數分析應用之技術,可以對水質進行更精確的監控與分析,實現更高效的水資源管理和處理過程。AI系統將自動調整處理工序,以應對不同的水質變化,確保出水質量滿足安全標準,同時提升水質穩定度,避免原料(藥劑)浪費。本案採用新鼎自行開發之人工智慧運行平台產品Mr.OPX(智能維運及製程優化平台),透過平台和再生水廠DCS系統串接,進行資料即時收集,並透過模型管理功能,有效的進行模型運行及維運,也透過視覺化分析介面,提供操作員即時的AI指引,協助操作員提前進行加藥調控,從而提升操作效率並實現最佳經濟效益。

檢視內容

3D 機器視覺搭配AI路徑規劃引領製鞋自動化新革命

發表年月 2019-12   應用領域 AI製造運用  

應用/研究單位 立普思股份有限公司

利用安裝於工廠產線或各種戶外嚴苛環境的工業等級的 ToF 與stereoscopy 3D相機擷取大量2D與3D影像,經由立普思團隊特殊的AI機器學習演算法與大數據整合,可有效識別並重建各式物體在3D空間中的相關位置資訊,配合立普思獨家的硬體加速與平行處理功能,可實現高禎率即時物件與人形識別,可廣泛應用於工業4.0、智慧零售、智慧農業、健康照護、安全監控等各種不同領域。 立普思的製鞋自動化方案同時整合了2D與3D機器視覺、手臂控制、電漿噴塗、與機台控制等,能有效取代傳統製鞋業的人工步驟,同時藉由單隻或多隻 2D/3D攝影機,透過影像拼接 (image stitch)方式,將物件全方位掃描結果搭配AI深度學習的自動路徑規劃,直接控制機器手臂帶動電漿噴頭,以精準的法向量覆蓋鞋底全表面進行噴塗,相較目前大多數使用線雷射掃描的方案有更快的整體反應速度,同時也更具價格競爭力。立普思的VGR (Vision Guided Robotic) 方案目前已成功導入製鞋生產,此技術同時也可應用在各種相關產業,或是搭配立普思的其他AI應用如人臉辨識 (Facial Recognition)、人流計數 (People Counting) 、身形辨識 (Pose Estimation)等。

檢視內容

自動化產線換線新利器: AI機器人自主學習技術

發表年月 2019-03   應用領域 AI製造運用  

應用/研究單位 工業技術研究院 巨量資訊科技中心

因應彈性化製造之生產趨勢,製造業需要導入AI以快速學習適應不同的生產需求。AI自主學習機器人是未來製造業邁向AI時代的關鍵技術,目前工廠導入視覺機器人必須仰賴演算法工程師針對不同工件調整參數來達成任務,造成換線/任務耗時耗力。工研院以深度增強式學習(Deep Reinforcement Learning,DRL)為基礎,研發自主學習之AI機器人夾取技術, 簡單、易用,補足勞力需求。本技術之特色與創新包含: 1.機器人自主嘗試學習,減少人為介入,讓換線能夠更加快速、有彈性2.以DRL技術提供更快速、更穩定、更精確的訓練機制3.結合機器人模擬軟體,大幅減少整體學習時間與實體嘗試的次數

檢視內容

工業3.5升級應用:AI影像識別-品管檢驗機器人

發表年月 2018-01   應用領域 AI製造運用  

應用/研究單位 五百戶科技股份有限公司

AI影像識別機器人可以取代原本大量使用人力進行產品外觀品質檢驗的重複性工作,透過攝影機影像進行識別及精準比對,減少人工作業的可能錯誤或是標準不一的情況,進而提升品質檢驗的良率與效率。 五百戶科技結合了資策會創新研究中心及國立中央大學創新AI應用中心的多年研發能量,開發出具有自建學習比對模型的新一代深度學習架構設計的AI影像識別機器人系統,運用CNN技術+TensorFlow框架,整合動態影像識別技術能力,可以快速建立類神經網路模型,用以精準分類並判斷產品外觀尺寸之優劣,達到近乎100%的精準檢驗結果。

檢視內容

客製化智慧製造分析:工業數據平台、產線 AI 視覺

發表年月 2019-03   應用領域 AI製造運用  

應用/研究單位 廣宣科技有限公司、台大電機工程所

智慧製造、工業4.0的概念已經對製造業帶來了一個新的概念,人工智能、5G、物聯網已經帶來了技術上的可行性,智能化 MES、CPS IoT/AIoT、智能控制系統、運用機器人的自動化,將帶來工業 4.0所強調的互聯、整合、數據、創新與轉型,並結合公司整體 ERP 與 CRM 系統,帶來更低成本、高品質、顧客高滿意度、符合市場快速更迭的製造服務與產品。 廣宣科技智能製造團隊,運用特殊 AI 深度特徵解析技術,將連續或離散生產數據,加以智能化處理,將所有產線效能指標做相依度之計算,並運用當前人工智慧解析特徵黑盒子的最新技術,將產線數據找出關鍵特徵,並配合製造專家顧問團隊進行產線問題解讀、並進一步透過各樣規則建模,並控制各項變因進行製程優化。不但可達到數據可視化、提升產線透明度,更能透過智能控制系統,達到互聯、集成,甚至反饋控制的效果。廣宣科技智能團隊由人工智慧資料科學家、工業工程專家、資深廠長級顧問團隊、控制系統專家、資訊系統整合專家組成,為不同工業需求提供客製化與具深度的顧問分析服務與智能資訊平台。已與多家兩岸三地製造業、化工業、電商物流業進行系統客製與智能化諮詢。

檢視內容

焊接機器人的極致應用-手臂預兆診斷及焊接品質監測

發表年月 2020-05   應用領域 AI製造運用  

應用/研究單位 智炬科技股份有限公司

現今工廠自動化的趨勢,已開始由大量機器人取代人工作業,製造業對機器人的需求及依賴程度越高,企業如何確保機器人的高可靠性呢? 因此,能夠自主性判別設備狀態與減少非計畫性停機更成為企業所需要深入探究的課題。機器學習智能監控系統即是針對各式機械設備的動態監測,使用者透過簡單建立健康規範,系統學習動作依照所累積的數據統計進而做出分析判斷,產業進而可訂立預知保養計畫並有助於設計者優化產線設計流程。 藉由即時偵測動態機械之訊號,可預測判斷機械手臂的健康狀況,及焊接作業品質的線上即時監測,使企業有較餘裕的時間安排設備維護與產線,將導入機器人的初衷發揮到極致,『做得快且做得好』

檢視內容

手工具電鍍瑕疵AI視覺檢測

發表年月 2020-04   應用領域 AI製造運用  

應用/研究單位 智炬科技股份有限公司

由於各式瑕疵原因分別在不同製程情境發生,於電鍍後進行判斷較能夠有效提升品質管制效率,需採用全檢模式以肉眼辨識,辨職難度高且高度仰賴人員的經驗,且遺漏比率約10%。透過以AOI自動光學檢測加上深度學習技術,克服金屬扳手反光之特性,提高瑕疵的辨識率(1) 縮短品檢作業時間:透過AOI智慧瑕疵檢測系統,每隻扳手檢測時間自3-4分鐘縮短至約3秒,統計報表由系統自動產出取代過去人工抄寫,且避免篩選遺漏。(2) 老師傅經驗數據化及標準化:依實際檢測數據進行標準差異值統計分析,回饋QC工程標準以優化公差設定值。(3) 生產批及不良品數量整合串接電子看板及MES、SPC系統,提高資訊即時性及加速管理報表產出。

檢視內容

AI看穿危機!打造高品質X光影像資料庫強化查驗效率

發表年月 2025-07   應用領域 AI製造運用  

應用/研究單位 漢翔航空工業股份有限公司

為了解決X光影像資料不足、類型不夠多樣的問題,我們開發了一套「影像擴增應用程式」,可以幫助建立更多、更豐富的訓練資料,用來提升AI模型辨識可疑物品的能力。這個程式有操作簡單的圖形介面,只要選好資料夾和影像變化的方式,就能自動批次處理大量X光影像。 整體來說,這項工具不只操作方便、靈活性高,也能有效補強訓練資料的不足,協助海關或安全單位建立更聰明、更有效率的智慧查驗系統。

檢視內容

克服 AI 智慧應用落地挑戰,導入一站式 AIoT 智慧平台,打造智造閉環

發表年月 2021-03   應用領域 AI製造運用  

應用/研究單位 中冠資訊股份有限公司

中冠 AIoT 智慧平台最主要的目的,是要將分散部署在不同電腦的AI應用,整合到同一個Web平臺中,讓員工只要以瀏覽器開啟入口網站,登入帳密,就能一站式管理工廠所有的生產資訊。例如:爐壁厚度監測AI,可透過爐壁探鑽深度與周圍壁面溫度變化的關聯性,訓練AI靠爐壁溫度變化,判斷爐壁厚薄,藉以預測爐壁冷卻元件受損情形,安排檢修時程。爐熱溫度預測AI 則是透過量測出鐵口的鐵水溫度變化,參考操作條件、鐵渣的化性分析,學習預知未來2~4小時的爐熱趨勢,藉此訓練出爐熱預測的AI,若預測到未來爐熱可能下降,就能即時調整生產參數,微調風溫、噴煤量,來維持爐熱的穩定。各 AI 智能應用案例細節,可參閱 https://www.ithome.com.tw/news/142938 報導

檢視內容

AI-AOI 基於深度學習之光學檢測解決方案

發表年月 2016-06   應用領域 AI製造運用  

應用/研究單位 慧穩科技股份有限公司

輔導客戶運用AI、深度學習結合客戶Domain Know-how,進行資料收集、資料前處理、轉換與分析並建立AI訓練與驗證模型,提供完整AI之解決方案,並協助客戶導入AI正循環。透過IoT(Internet of Things)或工業相機將資料彙整並AI、深度學習訓練,隨後可達AI之預測。應用:AOI(Automated Optical Inspection)、工業自動化、智慧工廠、客製化服務

檢視內容