數位分身模擬軟體開發
發表年月 2024-12 應用領域 AI製造運用應用/研究單位 優智能股份有限公司
透過人工智慧演算法來實現 (1) 工程師的調校經驗系統化及 (2) 調校結果的量化分析,幫助專業工程師在更短時間找出更佳的參數組合。此工具初期是以人機協作的方式運行,隨著智慧系統在過程中不斷自動學習最終可達到產品模型參數的全自動調校。
檢視內容透過人工智慧演算法來實現 (1) 工程師的調校經驗系統化及 (2) 調校結果的量化分析,幫助專業工程師在更短時間找出更佳的參數組合。此工具初期是以人機協作的方式運行,隨著智慧系統在過程中不斷自動學習最終可達到產品模型參數的全自動調校。
檢視內容小柿自主研發AI DIP瑕疵檢查機。 適用於波峰銲完的PCBA外觀檢測 可搭載在客戶產線上,也可運用在獨立檢測機台 搭配線性掃描光學模組,完整覆蓋拍攝物之表面取像。 自主研發的小樣本學習瑕疵檢測技術,僅使用10~20張良品影像,即可快速建模、投入檢測,適用於少量多樣的場景,客戶使用小量良品,即可在5~10分快速建模,可自動標註元件節省客戶調整時間,即可立即投入產線檢測。自主研發的AI深度學習技術,可實現PCBA之外觀檢測,例如缺件、極反、錯件、偏移、破損等瑕疵檢出。
檢視內容生產製造公司83%的資訊長認為,設備維護以及總體資產分析最佳化為提升企業競爭力之最主要途徑。「機台故障預診斷」是一套人工智慧(AI)與機器學習的系統,分析機台所產生的製程資料,進行即時監看、預測並以視覺化資料呈現,讓產線管理者可以掌握設備的健康狀態。
檢視內容本案AI瑕疵檢測系統採用模組化AI影像辨識架構,能依不同產線或產品特性快速調整應用模組,例如CNC加工瑕疵檢測、安全帽佩戴偵測等場域皆可靈活部署。系統具備參數化模型調控設計,可依產品規格設定辨識閾值與容許範圍,使用者能於後台即時調整以對應不同製程條件。透過邊緣運算技術結合高速工業相機與Jetson模組,系統可在0.3秒內完成瑕疵辨識與信心值判定,並自動回傳訊號至PLC進行不良品標示。此外,系統具備跨場域資料遷移學習能力,能根據既有標註資料快速微調模型,以降低重複建模成本。導入前提供POC原型驗證流程,讓客戶能於實際產線測試辨識成效與操作介面,確保後續開發更貼近實務需求。部署上採低門檻模組化設計,可透過月租或授權模式導入,提升企業導入意願。系統上線後提供模型再訓練、參數微調與遠端維運機制,確保AI辨識能力能隨產線變化持續優化,達成長期穩定運行與智慧製造轉型目標。
檢視內容由於各式瑕疵原因分別在不同製程情境發生,於電鍍後進行判斷較能夠有效提升品質管制效率,需採用全檢模式以肉眼辨識,辨職難度高且高度仰賴人員的經驗,且遺漏比率約10%。透過以AOI自動光學檢測加上深度學習技術,克服金屬扳手反光之特性,提高瑕疵的辨識率(1) 縮短品檢作業時間:透過AOI智慧瑕疵檢測系統,每隻扳手檢測時間自3-4分鐘縮短至約3秒,統計報表由系統自動產出取代過去人工抄寫,且避免篩選遺漏。(2) 老師傅經驗數據化及標準化:依實際檢測數據進行標準差異值統計分析,回饋QC工程標準以優化公差設定值。(3) 生產批及不良品數量整合串接電子看板及MES、SPC系統,提高資訊即時性及加速管理報表產出。
檢視內容Dataset Acquire資料匯入整合管理、Dataset Reprocessing 資料前處理與作業、Dataset Understanding資料理解與分析、Data Labeling資料標記輔助系統、Model Generator模型設計、Auto deployment自動發佈模型
檢視內容此專案的目標是開發一個基於人工智慧和機器學習技術的鋼胚收料電子化 與鋼胚表面影像辨識系統,此專案能夠在鋼胚收料時透過人工智慧的系統將資 訊電子化,並透過影像辨識準確地檢測鋼胚表面的缺陷、異常和鏽蝕。透過這 樣的系統,我們希望能夠實現以下目標:A. 提高生產線上的檢測效率和準確性;B. 減少人力成本和檢測錯誤;C. 改善產品質量並提高客戶滿意度;D. 提高生產過程的安全性和可追溯性。
檢視內容本PHM系統的核心價值在於其能夠精確地預測設備健康狀態與設備的製程狀態,提高生產過程的效率。透過結合IOT、邊緣運算,系統不僅能夠減少算力需求和演算時間,還能夠降低誤判風險,提高模型的遷移性。這項創新技術將為製造業的數位轉型帶來巨大的改變,協助企業實現高效運營和成本降低。
檢視內容本PHM系統的核心價值在於其能夠精確地預測設備健康狀態與設備的製程狀態,提高生產過程的效率。透過結合IOT、邊緣運算,系統不僅能夠減少算力需求和演算時間,還能夠降低誤判風險,提高模型的遷移性。這項創新技術將為製造業的數位轉型帶來巨大的改變,協助企業實現高效運營和成本降低。
檢視內容齊料管理精靈可以透過預測供應商交貨模式,讓人力集中處理需要跟催或緊急調度的工作安排,提高準確交貨率,並加入廠內的流程運作特徵,放入模型中做為計算參數之一,以期達到如期齊料開工的目標。智炬科技「智慧製造顧問團隊」加入時間序列等機器學習演算法,從企業原有資訊系統中取出預計交貨、實際交貨、預計檢驗、如期檢驗、預計發料、如期發料等資訊,整理數據之後經過演算,得出高度齊料可如期派工的工令順序、以及具高度缺料風險的工令資訊,同時找出可遞補的派工批,讓生管排程更省力化。串聯即時通訊應用技術推播高風險物料狀況,啟動全員關注料況行動,協助企業降低缺料風險,提升生產計劃達成率,減少低價值溝通行為。
檢視內容利用安裝於工廠產線或各種戶外嚴苛環境的工業等級的 ToF 與stereoscopy 3D相機擷取大量2D與3D影像,經由立普思團隊特殊的AI機器學習演算法與大數據整合,可有效識別並重建各式物體在3D空間中的相關位置資訊,配合立普思獨家的硬體加速與平行處理功能,可實現高禎率即時物件與人形識別,可廣泛應用於工業4.0、智慧零售、智慧農業、健康照護、安全監控等各種不同領域。 立普思的製鞋自動化方案同時整合了2D與3D機器視覺、手臂控制、電漿噴塗、與機台控制等,能有效取代傳統製鞋業的人工步驟,同時藉由單隻或多隻 2D/3D攝影機,透過影像拼接 (image stitch)方式,將物件全方位掃描結果搭配AI深度學習的自動路徑規劃,直接控制機器手臂帶動電漿噴頭,以精準的法向量覆蓋鞋底全表面進行噴塗,相較目前大多數使用線雷射掃描的方案有更快的整體反應速度,同時也更具價格競爭力。立普思的VGR (Vision Guided Robotic) 方案目前已成功導入製鞋生產,此技術同時也可應用在各種相關產業,或是搭配立普思的其他AI應用如人臉辨識 (Facial Recognition)、人流計數 (People Counting) 、身形辨識 (Pose Estimation)等。
檢視內容工研院研發產品品質指標預測技術,與軸承製造大廠T公司合作進行軸承加工產線的線上測試,基於機台電力、加工應變力等大數據,透過智慧分析瞭解刀具狀態與工件品質關係,及時偵測NoGo工件,降低損失。並藉由及時調整抽檢頻率,動態配置檢測人力,使傳統離線且需成品完成後的抽檢改為線上即時的全面檢測。
檢視內容AI刀具智慧壽命監控可以將工廠重要議題浮出檯面並予以解決,透過機器數據收集,大量擷取機台資訊創造原始資料庫,科智企業採用人工智慧深度學習(Deep Learning),以及演算法,透過平台整合所有資料來源並精密分析運算後,讓工廠最常出現的耗材「刀具」予以控管,並且知悉刀具使用時間、個別磨耗程度、追蹤管理刀具庫,同時也具備磨耗預警功能,讓使用者能快速掌握工廠加工狀況,以確保所製造出的產品品質以及刀具成本控管。 同時也可以整合科智企業發展的ServCloud,不僅協助自主客戶並能擴大至上下游,整合各個廠域工廠資料,打造智慧供應鏈,也可以將原先廠內的ERP、MES資料進行介接,不浪費企業內部資源。將機台、人員、金流、報工資訊等重要工廠議題,進行整合與使用,讓工廠資訊即時且透明化。目前已成功導入台灣中小事業群體,以及外銷機聯網產品至海外如:泰國、印度、大陸、歐洲等國家。
檢視內容基於設備大數據的預測性維護與診斷 AVEVA PRiSM的APR技術 (Advanced Pattern Recognition先進模式識別),將設備的實時運行數據同其特有運行模式進行比對,發現系統行爲的細微差異,從而對設備可能存在的問題進行提前預警,實現對設備的預測性維護。早於傳統報警系統數天、數周或數月進行預警 傳統的警告方式為設定上、下界限,但PRiSM是以點的周圍來計算,利用演算法建立一個正常的模式,當實際值和預測值之間的偏差超過允許的限制時進行預先報警。
檢視內容MusesAI- 是提供製造業非資訊人員,透過一站式介面指示精靈,可快速、簡單、準確度高方式,在系統介面自動協同標註特徵及自動訓練AI模型,而後即可立即下載佈署使用的一站式AI模型開發平台,其中AI應用模組類別包含影像類及數據類兩大方向,影像類涵蓋物件辨識(數量、標工)、人員行為辨識、工地安全等;而數據類則涵蓋機台閒置預測、設備故障診斷等應用,可大幅降低一般AI模型開發門檻及投入時間。
檢視內容