AOI+AI 智慧產線串聯,打造高效率生產現場管理
發表年月 2024-09 應用領域 AI製造運用應用/研究單位 緯謙科技股份有限公司
因應少量多樣的訂單複雜性需求,透過建置上下游供應鏈資訊串流平台與外包商空桶管理系統,提升供應鏈串接的能力,並藉由射出機連線與可視化看板、AI 智慧排程系統,提升製造端管理手法,進行智慧化生產現場管理,進而達到指標的改善。
檢視內容因應少量多樣的訂單複雜性需求,透過建置上下游供應鏈資訊串流平台與外包商空桶管理系統,提升供應鏈串接的能力,並藉由射出機連線與可視化看板、AI 智慧排程系統,提升製造端管理手法,進行智慧化生產現場管理,進而達到指標的改善。
檢視內容AI布料花色檢索系統透過數位留樣系統拍照,以AI分類識別,定義不同布料材質、顏色與圖樣款式,在將數種物理特性轉化為數位化資料保存下,開發出數位化織品色彩及花色管理平台,這樣的概念類似於搜索引擎,紡織廠可以透過平台快速檢核庫存及過往記錄中最接近的色樣,以顏色及花紋識別,結合光照系統及色彩管理技術,制定紡織產業在庫存管理、數位資料庫、及產品 QC 的檢核標準,減少在打樣及確認上的時間及人力成本,同時減少人因誤差。
檢視內容案例‒鋼珠製造產業長期以來面臨產品種類眾多、尺寸規格複雜、客戶經常性改單導致生產線產能分配不均、工裝次數頻繁、磨盤異常損壞增加等問題,造成工廠生產效率不佳。鋼珠製造流程從原物料的線材、鍛造到形成鋼珠的粗研磨、熱處理、細研磨、精研磨,最後為成品的洗淨、檢驗和全檢;其中主要的瓶頸為粗研磨至精研磨的關鍵三道研磨製程。其原因為鋼珠在研磨過程無法即時監控磨盤的狀況,容易造成堵溝、尺寸變異,嚴重時將造成磨盤崩裂而傷及鋼珠的完整性,若因人員的疏失造成規值的錯誤,不但造成產能的損失且增加成品久置而生鏽的可能性,增加產品重製的加工成本及工廠的產品產出時間(cycle time)。
檢視內容針對生產資料缺漏及衍生之後續產生的分析誤判,我們用 AI 工具來進行資料修補,確保資料完整性之後,再以另一 AI 工具進行快速的異常篩檢。我們將以上兩項功能和資料視覺化工具整合成可擴充功能的系統平台,便於根據使用者需求新增或調整功能。
檢視內容昱峰以智能大數據科技(AI+BIGData+Technology)的核心能力,引領晶圓製造業進入智能決策新境界。昱峰團隊曾在半導體晶圓廠有24年經驗,橫跨製程,產能,良率,產品設計,IT各個關鍵領域。並投入14年的實戰經驗以智能數據分析能有效定位製程上各類問題,並幫助晶圓廠創造百億以上的績效。 在全球晶圓產能持續升高之下,我們該如何在這波產能擴增中勝出。另一要關注的趨勢是,各大晶圓廠在微縮製程的追逐,暫告一個段落,轉向在利基產品上聚焦。在此趨勢之下,要在原本的產能製程技術上,想要有突破性的成長與改善,投資非常巨大。AI+BIGDATA給我們指引出一條新的路徑。
檢視內容慧演智能專注於為製造業提供 AI 影像辨識解決方案,已成功應用於半導體、電子周邊及食品製造。 我們自主研發的 BailAI 平台,讓企業無需撰寫程式,即可完成從資料標註、模型訓練到部署推論的全流程管理。1.免寫程式、操作簡便:專為非工程背景用戶設計,一站式導入 AI 檢測。 2.快速建模、少量多樣:內建多種優化演算法,可用極少影像資料完成高效訓練。 3.靈活場域應用:模型可快速切換,適應不同工廠、產品線及檢測條件。 4.推論即時、自動監控:整合邊緣端 AI BOX,能即時判斷並記錄現場影像。 5.大幅節省成本與時程:縮短驗證週期、降低導入成本,加速 AI 成果落地。
檢視內容《振海資通股份有限公司》利用AI機器學習搭配AOI技術,已部署於電容器製造業並成功實際運用。由於電解電容器為圓柱形體相關問題,此方案可解決傳統平面檢測較無法檢出的相關問題,檢測出人眼無法看到的瑕疵、測量物件尺寸及辨識物件位置等,是一套非接觸式檢測系統,可在動態製程中檢測。對所須檢測項目進行取樣,樣本進行標註數據化後,將數據透過演算法,進行瑕疵檢測數據分析,歸納出各階段產出不良品之原因,確保品質穩定性,提生良率,實現智能化的生產線。
檢視內容隨著電子元件微型化,對檢測設備準確度之要求越來越高,然而現今檢測設備大多仍採取傳統影像處理技術來檢測瑕疵,無法滿足高準確度之需求,為了避免漏檢瑕疵,業者被迫將檢測機台靈敏度調高,其副作用就是造成了大量假瑕疵的產生,使得產線仍須耗費大量人力做二次篩檢,不僅耗費成本,且影響產品品質及生產速度。國內檢測設備業者聯策科技以AI深度學習技術進行真假瑕疵之判定,可協助PCB業者減少一半以上之假瑕疵,促進產線自動化,且以軟帶硬提升設備10倍之價值。
檢視內容現今工廠自動化的趨勢,已開始由大量機器人取代人工作業,製造業對機器人的需求及依賴程度越高,企業如何確保機器人的高可靠性呢? 因此,能夠自主性判別設備狀態與減少非計畫性停機更成為企業所需要深入探究的課題。機器學習智能監控系統即是針對各式機械設備的動態監測,使用者透過簡單建立健康規範,系統學習動作依照所累積的數據統計進而做出分析判斷,產業進而可訂立預知保養計畫並有助於設計者優化產線設計流程。 藉由即時偵測動態機械之訊號,可預測判斷機械手臂的健康狀況,及焊接作業品質的線上即時監測,使企業有較餘裕的時間安排設備維護與產線,將導入機器人的初衷發揮到極致,『做得快且做得好』
檢視內容利用安裝於工廠產線或各種戶外嚴苛環境的工業等級的 ToF 與stereoscopy 3D相機擷取大量2D與3D影像,經由立普思團隊特殊的AI機器學習演算法與大數據整合,可有效識別並重建各式物體在3D空間中的相關位置資訊,配合立普思獨家的硬體加速與平行處理功能,可實現高禎率即時物件與人形識別,可廣泛應用於工業4.0、智慧零售、智慧農業、健康照護、安全監控等各種不同領域。 立普思的製鞋自動化方案同時整合了2D與3D機器視覺、手臂控制、電漿噴塗、與機台控制等,能有效取代傳統製鞋業的人工步驟,同時藉由單隻或多隻 2D/3D攝影機,透過影像拼接 (image stitch)方式,將物件全方位掃描結果搭配AI深度學習的自動路徑規劃,直接控制機器手臂帶動電漿噴頭,以精準的法向量覆蓋鞋底全表面進行噴塗,相較目前大多數使用線雷射掃描的方案有更快的整體反應速度,同時也更具價格競爭力。立普思的VGR (Vision Guided Robotic) 方案目前已成功導入製鞋生產,此技術同時也可應用在各種相關產業,或是搭配立普思的其他AI應用如人臉辨識 (Facial Recognition)、人流計數 (People Counting) 、身形辨識 (Pose Estimation)等。
檢視內容以one-class learning之學習架構,導入AOI (Automated optical inspection)檢測瑕疵智慧化發展,在自動化條件下提升產品檢測辨識率,以減少人力工作負重量,包含兩部份工作,一、建立以Autoencoder與self-organizing maps為基礎之瑕疵檢測技術,並完成廠商提供實際AOI機台資料之瑕疵檢測技術測試;二、完成廠商現場機台系統整合與資料介接,將影像資料透過AOI系統之接口導入部署分析技術之邊緣運算裝置,再將分析結果傳回AOI系統中,於介面上顯示瑕疵區域。主要利用python撰寫建立影像辨識軟體,其同時具備了影像前處理功能,例如:高斯慮波(Gaussian Filtering)、均值模糊(Averaging Blur)、中值模糊(Median Blur)、雙邊濾波(Bilateral Filter)且包含分析功能與可提供數據可視化及存儲之後處理功能。使用本分析軟體可直接將原始照片進行進階分析,由預前訓練模型直接辨識產品的相片是否有無缺陷,可調控參數設定靈敏度以及協助執行品管。
檢視內容當無法明確規範產品瑕疵檢測標準時,很多企業往往必須藉由老師傅的經驗進行人工檢測以確保出貨品質,也因此面臨檢測速度緩慢、人工缺乏及老師傅凋零的痛點。智能視覺檢測系統是基於視覺檢測監控設備所累積的大量品質檢測圖形及影像進行分析,根據老師傅的經驗自動學習能判斷產品合格與否的視覺特徵,協助製造業建立AI品質檢測模型,自動快速地對產品進行媲美老師傅的檢測,永續確保產品出貨的品質。鼎新電腦的「大人物」部門具備研發整合「大數據、人工智慧、物聯網」各式應用的能力,能夠為企業分析需求並量身打造適合的人工智慧應用。智能視覺檢測系統的核心技術是結合機器視覺與深度學習對大量的圖形影像進行處理及分析,並藉由與客戶的領域專家持續互動找出視覺檢測測熱區及特徵,最後建立可視化之AI品質檢測模型,進而提升整體出貨品質。
檢視內容小柿自主研發AI DIP瑕疵檢查機。 適用於波峰銲完的PCBA外觀檢測 可搭載在客戶產線上,也可運用在獨立檢測機台 搭配線性掃描光學模組,完整覆蓋拍攝物之表面取像。 自主研發的小樣本學習瑕疵檢測技術,僅使用10~20張良品影像,即可快速建模、投入檢測,適用於少量多樣的場景,客戶使用小量良品,即可在5~10分快速建模,可自動標註元件節省客戶調整時間,即可立即投入產線檢測。自主研發的AI深度學習技術,可實現PCBA之外觀檢測,例如缺件、極反、錯件、偏移、破損等瑕疵檢出。
檢視內容為了解決X光影像資料不足、類型不夠多樣的問題,我們開發了一套「影像擴增應用程式」,可以幫助建立更多、更豐富的訓練資料,用來提升AI模型辨識可疑物品的能力。這個程式有操作簡單的圖形介面,只要選好資料夾和影像變化的方式,就能自動批次處理大量X光影像。 整體來說,這項工具不只操作方便、靈活性高,也能有效補強訓練資料的不足,協助海關或安全單位建立更聰明、更有效率的智慧查驗系統。
檢視內容