TISSA_LOGO

AI視覺圓周銲接自動化

發表年月 2020-11   應用領域 AI製造運用  

應用/研究單位 所羅門股份有限公司

本案例使用視覺辨識銲道的位置和姿態,再驅使機械手臂進行全周銲。同時進行銲接品質之AI檢測,在銲接完成的端板上方架設一台CCD,捕捉銲道的影像,使用訓練好的模型便可立即辨識出端板銲道的各種缺陷和瑕疵,若辨識出有缺陷或瑕疵的端板會發出警示,通知工作人員進行補銲之作業。

檢視內容

智慧製造之良率管理: 人工智慧自動光學檢測(AIAOI)

發表年月 2021-11   應用領域 AI製造運用  

應用/研究單位 維曙智能科技有限公司

維曙智能科技(Vizuro)是為企業打造數位轉型戰情室的跨國人工智慧新創公司,總部位於美國波士頓,研發中心在台灣台北。聚焦智慧製造良率管理,醫療影像癌症篩檢,生醫科技通路行銷策略等領域。Vizuro的核心團隊由實戰經驗豐富的多位資料科學家所組成,有別於業界(AI+AOI,人工智慧結合自動光學辨識) 大多只具備標準化的自動瑕疵辨識軟體,Vizuro在瑕疵分類之外,也推出異常偵測、因果推論、製程優化等自主研發的多元人工智慧模型,因應不同客戶的需求,並提供顧問健檢、協作團隊建立、站點模擬與概念性驗證等服務,擅長跨國的客製化專案。

檢視內容

AI PHM預兆診斷系統

發表年月 2023-08   應用領域 AI製造運用  

應用/研究單位 PHM/聖森雲端科技

本PHM系統的核心價值在於其能夠精確地預測設備健康狀態與設備的製程狀態,提高生產過程的效率。透過結合IOT、邊緣運算,系統不僅能夠減少算力需求和演算時間,還能夠降低誤判風險,提高模型的遷移性。這項創新技術將為製造業的數位轉型帶來巨大的改變,協助企業實現高效運營和成本降低。

檢視內容

機器人智能預知診斷解決方案

發表年月 2017-07   應用領域 AI製造運用  

應用/研究單位 新漢智能系統股份有限公司

機器人在製造業的應用已經越來越廣泛,相對的機器人是否能順利運作對生產工作的穩定性也會有相當程度的影響。因此若是有一套系統能針對機器人的健康狀態做線上的監測,並能在機器人發生問題的初期就能發現並及早通知使用者,就能夠及早因應並採取必要的措施,就能有效降低機器人無預警的損壞造成對生產作業的衝擊。機器人自動預知診斷系統能夠7/24線上監測機器人機件運作的細微動作變化,只需要在機器人的基座放置一個震動感應sensor,系統會根據sensor量測到的訊號建立模態,內建的機器學習演算法自動對運作模態做追蹤,無須專家就能夠自動診斷機器人的健康狀態。同時也可以將相關的診斷結果透過內建的IoT Studiio(物聯網通訊軟體)傳送的Internet、雲端、Edge Server。

檢視內容

神通AI+AOI,有效鑑別良品,減少60%人工復判需求

發表年月 2021-03   應用領域 AI製造運用  

應用/研究單位 神通資訊科技股份有限公司

以one-class learning之學習架構,導入AOI (Automated optical inspection)檢測瑕疵智慧化發展,在自動化條件下提升產品檢測辨識率,以減少人力工作負重量,包含兩部份工作,一、建立以Autoencoder與self-organizing maps為基礎之瑕疵檢測技術,並完成廠商提供實際AOI機台資料之瑕疵檢測技術測試;二、完成廠商現場機台系統整合與資料介接,將影像資料透過AOI系統之接口導入部署分析技術之邊緣運算裝置,再將分析結果傳回AOI系統中,於介面上顯示瑕疵區域。主要利用python撰寫建立影像辨識軟體,其同時具備了影像前處理功能,例如:高斯慮波(Gaussian Filtering)、均值模糊(Averaging Blur)、中值模糊(Median Blur)、雙邊濾波(Bilateral Filter)且包含分析功能與可提供數據可視化及存儲之後處理功能。使用本分析軟體可直接將原始照片進行進階分析,由預前訓練模型直接辨識產品的相片是否有無缺陷,可調控參數設定靈敏度以及協助執行品管。

檢視內容

AI助攻多產業瑕疵檢測!快速辨識孔洞位置與通透性

發表年月 2025-07   應用領域 AI製造運用  

應用/研究單位 漢翔航空工業股份有限公司

本案AI瑕疵檢測系統使用先進的影像處理技術,能夠從不同角度全面檢測工件,並且辨識特徵數量及各種微小的瑕疵或缺陷。相比人工檢查可能因疲勞或視覺限制而漏檢的問題,檢測系統能夠提供更高的一致性和準確度,不受人員情緒和疲勞影響,能夠保持穩定的檢測質量。過去品檢員在使用傳統方法時,需要逐一從多個角度檢查每個工件,每次檢查一個工件需要約15秒。導入AI系統則能在短短4秒內完成相同的檢查任務顯著縮短了每個工件的檢查時間。

檢視內容

工廠專家級系統應用:企業快速導入機器學習的第一哩路

發表年月 2019-06   應用領域 AI製造運用  

應用/研究單位 杰倫智能科技股份有限公司

JWII Automated ML Engine 可協助製造業以合理的成本與快速的導入來建立高價值系統,解決工廠設備異常損失與工程品質不穩定的問題,藉此提升產品品質、生產效能、與達交率,最終達到智動化生產與智慧工廠的目標。 JWII Automated ML Engine已於諸多產業的製造環節中應用,目前已成功導入光電產業、石化產業、PCB產業、電子組裝產業、金屬加工業、設備製造業、表面處理產業、傳統產業…等,提供製程參數異常偵測、生產配方最佳化推薦、連續性製程品質預測、設備故障停機預測、異常因子分析預測…等相關製造業所應用。 JWII Automated ML Engine 可單獨使用,同時也可與企業應用系統整合如ERP、PLM、MES、IOT、WMS、BI…等異質系統中,讓這些系統被賦予AI 預測與診斷等特性,讓相關系統達到智能化的目標。

檢視內容

AI智慧製造解決方案-工廠設備預知保養

發表年月 2023-08   應用領域 AI製造運用  

應用/研究單位 國內製造業石化產業

基於設備大數據的預測性維護與診斷 AVEVA PRiSM的APR技術 (Advanced Pattern Recognition先進模式識別),將設備的實時運行數據同其特有運行模式進行比對,發現系統行爲的細微差異,從而對設備可能存在的問題進行提前預警,實現對設備的預測性維護。早於傳統報警系統數天、數周或數月進行預警 傳統的警告方式為設定上、下界限,但PRiSM是以點的周圍來計算,利用演算法建立一個正常的模式,當實際值和預測值之間的偏差超過允許的限制時進行預先報警。

檢視內容

手工具電鍍瑕疵AI視覺檢測

發表年月 2020-04   應用領域 AI製造運用  

應用/研究單位 智炬科技股份有限公司

由於各式瑕疵原因分別在不同製程情境發生,於電鍍後進行判斷較能夠有效提升品質管制效率,需採用全檢模式以肉眼辨識,辨職難度高且高度仰賴人員的經驗,且遺漏比率約10%。透過以AOI自動光學檢測加上深度學習技術,克服金屬扳手反光之特性,提高瑕疵的辨識率(1) 縮短品檢作業時間:透過AOI智慧瑕疵檢測系統,每隻扳手檢測時間自3-4分鐘縮短至約3秒,統計報表由系統自動產出取代過去人工抄寫,且避免篩選遺漏。(2) 老師傅經驗數據化及標準化:依實際檢測數據進行標準差異值統計分析,回饋QC工程標準以優化公差設定值。(3) 生產批及不良品數量整合串接電子看板及MES、SPC系統,提高資訊即時性及加速管理報表產出。

檢視內容

AIBDT Total Solution 【智能數據大平台】【決策分析系統】【良率品質工程】

發表年月 2021-08   應用領域 AI製造運用  

應用/研究單位 半導體、光電業、PCB產業

昱峰以智能大數據科技(AI+BIGData+Technology)的核心能力,引領晶圓製造業進入智能決策新境界。昱峰團隊曾在半導體晶圓廠有24年經驗,橫跨製程,產能,良率,產品設計,IT各個關鍵領域。並投入14年的實戰經驗以智能數據分析能有效定位製程上各類問題,並幫助晶圓廠創造百億以上的績效。 在全球晶圓產能持續升高之下,我們該如何在這波產能擴增中勝出。另一要關注的趨勢是,各大晶圓廠在微縮製程的追逐,暫告一個段落,轉向在利基產品上聚焦。在此趨勢之下,要在原本的產能製程技術上,想要有突破性的成長與改善,投資非常巨大。AI+BIGDATA給我們指引出一條新的路徑。

檢視內容

AI 能源總管需量預測系統

發表年月 2020-08   應用領域 AI製造運用  

應用/研究單位 思納捷科技股份有限公司

鋼鐵業係屬高耗能產業,據統計顯示,鋼鐵業的能源消費與二氧化碳排放比例在全國工業部門中排名第1位。尤其煉鋼製程中的數種主要加熱爐如電弧爐(EAF)、電渣重熔精煉爐ESR 、真空電弧精煉爐VAR 和真空感應熔解爐VIM等用電量都極高。 其中最重要的在於煉鋼過程中,若全廠用電設備包含前述煉鋼爐若同時投入生產時將導致用電超約,導致鉅額的超約費,造成生產成本的巨大負擔。因此如何配合煉鋼作業同時避免超約罰款,是業者迫切要克服的難題。

檢視內容

AOI瑕疵檢測快精準、智動複檢更省力

發表年月 2018-06   應用領域 AI製造運用  

應用/研究單位 工業技術研究院 巨量資訊科技中心

隨著電子元件微型化,對檢測設備準確度之要求越來越高,然而現今檢測設備大多仍採取傳統影像處理技術來檢測瑕疵,無法滿足高準確度之需求,為了避免漏檢瑕疵,業者被迫將檢測機台靈敏度調高,其副作用就是造成了大量假瑕疵的產生,使得產線仍須耗費大量人力做二次篩檢,不僅耗費成本,且影響產品品質及生產速度。國內檢測設備業者聯策科技以AI深度學習技術進行真假瑕疵之判定,可協助PCB業者減少一半以上之假瑕疵,促進產線自動化,且以軟帶硬提升設備10倍之價值。

檢視內容

AI智慧瑕疵檢測-織造業者織帶檢測

發表年月 2020-11   應用領域 AI製造運用  

應用/研究單位 巨鷗科技股份有限公司

因現場操作人員無法兼顧所有機台確認狀況,當織帶編織錯誤時, 需到最後品管包裝才能確認錯誤,現場機台編織織帶60~70碼/時,會造成相當長度的損失。 當織帶會遇到明顯不良包括脫線、預計導入鞋帶工廠織帶良率檢測系統改善品管流程提前修正錯誤降低材料耗損。

檢視內容

工業應用的字元辨識

發表年月 2021-10   應用領域 AI製造運用  

應用/研究單位 國立雲林科技大學 多媒體技術與應用實驗室

本案提供「金屬表面/工程圖面/鋼卷」三類字元辨識方案。 金屬表面字元辨識:面向閥體加工件,運用反光抑制、陰影補償與深度學習 OCR,在油污、刮痕與曲面條件下仍可穩定讀取,支援手持、固定工站與產線相機,序號/料號可即時寫入 MES/ERP。 工程圖面字元辨識:自動解析 2D 圖面中的尺寸、符號、材質牌號與註記,輸出 CAD 欄位、BOM 或標準表單,減少人工判讀。 鋼卷字元辨識:在高速移動與強反光下,以工業相機與邊緣運算快速讀取捲鋼外觀碼與標籤,完成批號、規格與庫存之批次建檔與追溯。

檢視內容

AI決策時代來臨!瑕疵檢測不再靠眼力,AI驅動AOI打造零缺陷智慧產線

發表年月 2025-11   應用領域 AI製造運用  

應用/研究單位 魔幣雲公司

本案AI瑕疵檢測系統採用模組化AI影像辨識架構,能依不同產線或產品特性快速調整應用模組,例如CNC加工瑕疵檢測、安全帽佩戴偵測等場域皆可靈活部署。系統具備參數化模型調控設計,可依產品規格設定辨識閾值與容許範圍,使用者能於後台即時調整以對應不同製程條件。透過邊緣運算技術結合高速工業相機與Jetson模組,系統可在0.3秒內完成瑕疵辨識與信心值判定,並自動回傳訊號至PLC進行不良品標示。此外,系統具備跨場域資料遷移學習能力,能根據既有標註資料快速微調模型,以降低重複建模成本。導入前提供POC原型驗證流程,讓客戶能於實際產線測試辨識成效與操作介面,確保後續開發更貼近實務需求。部署上採低門檻模組化設計,可透過月租或授權模式導入,提升企業導入意願。系統上線後提供模型再訓練、參數微調與遠端維運機制,確保AI辨識能力能隨產線變化持續優化,達成長期穩定運行與智慧製造轉型目標。

檢視內容