CISA_LOGO

工廠聯網DIY!裝機維護自已來

發表年月 2018-07   應用領域 AI製造運用  

應用/研究單位 資策會 智慧化系統所

配合變色龍聯網解決方案,資策會亦提供AI分析協助生產執行提升產能之技術支援,根據感測器蒐集機台設備運作的細部動作資訊,找出能評估老化趨勢之關鍵資訊,進而利用機器學習方法建立感測資訊與。實際案例包含砂輪機研磨耗損偵測、截斷機裁斷長度預診、空壓機異常停機特徵偵測等等,以AI技術偵測協助現場生產,提高生產良率。 聯網應用描述:資策會智慧系統所研發Pub/Sub 設備聯網閘道技術,提供低延遲且可自主維護之工廠資訊化軟體,導入後使用者可自主管理,現場設備或感測器擴充不需再外包增加資訊化成本。可涵蓋範圍包含多家PLC、CNC控制器、現場表頭、外掛感測器、通訊介面卡轉接及Barcode Reader、RFID Reader等,設備內或現場環境偵測都可集中處理,大幅提升廠內智慧化程度。

檢視內容

AI視覺圓周銲接自動化

發表年月 2020-11   應用領域 AI製造運用  

應用/研究單位 所羅門股份有限公司

本案例使用視覺辨識銲道的位置和姿態,再驅使機械手臂進行全周銲。同時進行銲接品質之AI檢測,在銲接完成的端板上方架設一台CCD,捕捉銲道的影像,使用訓練好的模型便可立即辨識出端板銲道的各種缺陷和瑕疵,若辨識出有缺陷或瑕疵的端板會發出警示,通知工作人員進行補銲之作業。

檢視內容

數位分身模擬軟體開發

發表年月 2024-12   應用領域 AI製造運用  

應用/研究單位 優智能股份有限公司

透過人工智慧演算法來實現 (1) 工程師的調校經驗系統化及 (2) 調校結果的量化分析,幫助專業工程師在更短時間找出更佳的參數組合。此工具初期是以人機協作的方式運行,隨著智慧系統在過程中不斷自動學習最終可達到產品模型參數的全自動調校。

檢視內容

智能視覺檢測:AI勤學老師傅,品質檢測快狠準

發表年月 2020-09   應用領域 AI製造運用  

應用/研究單位 鼎新電腦股份有限公司

當無法明確規範產品瑕疵檢測標準時,很多企業往往必須藉由老師傅的經驗進行人工檢測以確保出貨品質,也因此面臨檢測速度緩慢、人工缺乏及老師傅凋零的痛點。智能視覺檢測系統是基於視覺檢測監控設備所累積的大量品質檢測圖形及影像進行分析,根據老師傅的經驗自動學習能判斷產品合格與否的視覺特徵,協助製造業建立AI品質檢測模型,自動快速地對產品進行媲美老師傅的檢測,永續確保產品出貨的品質。鼎新電腦的「大人物」部門具備研發整合「大數據、人工智慧、物聯網」各式應用的能力,能夠為企業分析需求並量身打造適合的人工智慧應用。智能視覺檢測系統的核心技術是結合機器視覺與深度學習對大量的圖形影像進行處理及分析,並藉由與客戶的領域專家持續互動找出視覺檢測測熱區及特徵,最後建立可視化之AI品質檢測模型,進而提升整體出貨品質。

檢視內容

半導體光學鏡片製程AI品質檢測系統

發表年月 2020-09   應用領域 AI製造運用  

應用/研究單位 思納捷科技股份有限公司

因應全球智慧製造發展趨勢,加速國內高精密光學邁向智慧製造時代,本應用發展能源稼動管理機制依據研拋製程情況,透過遠端監測設備狀態、預知保養,以降低設備人力維護成本需同時收集廠區設備變壓器運轉時之溫度、電壓、電流等諸元,即時提供故障因應對策、變壓器剩餘壽命診斷,從能源資料、設備機台到智慧預警,提出流程改善規劃,以達到整體生產力提升的目的。

檢視內容

AI自動光學檢測

發表年月 2024-09   應用領域 AI製造運用  

應用/研究單位 智合科技股份有限公司

(應用一)該系統提供鑽石磨棒刃面處全景深影像留存並提供鑽石磨棒使用後回廠人工比對功能。由於原先生產過程中含人工操作的步驟,所以效率不高,必須使用大量的人力才能滿足量測速度,且有許多數據因人工作業較久無法逐顆量測,需透過作業員觀察到異常時才進行量測,容易發生漏檢情形。本公司透過人工智慧機器視覺方式進行語義分割及迴歸預測,有效縮短生產量測時間並提供鑽石刃面偏心度、鑽石露出面積…等量化數據,不僅提高生產速度及量測品質,亦降低了客戶的人事成本(設備取代人力),創造出客戶與本司雙贏的局勢。       (應用二)在客戶的產線中銅箔基板因前製程的不良品或是製程汙染(刮傷、亮點、摺痕、污點、粒銅、氧化…等),導致在後製程前需人工檢查品質加以剔除,若發現瑕疵則使用麥克筆標記該區域,再用雷射打標機以人工對準標記區域進行雷射標記,本系統使用AI物件分類算法以在線學習方式來識別人工記號,並結合雷射打標完成自動打標功能。           (應用三)隨著SMD元件尺寸日漸縮小,檢測時每片貼片電阻基板上的電阻元件數量可達上萬顆,傳統人工目檢方法已難滿足生產需求,但市場上目前尚未有能支援到0.201…等小尺寸SMD元件的自動量測修阻痕跡並進行雷射打標的設備。本公司採用大標靶且超高解析度工業相機,再搭配高解析度鏡頭,以單隻相機取照架構滿足應用需求以及使用顯示卡透過批量方式進行AI順向預測,極大化使用顯示卡記憶體滿足速度上的需求,並以AI機器視覺方式進行影像分類及物件偵測來達到高精度的檢測功能。                           智合科技的研發團隊結合人工智慧(AI)與光學辨識系統(AOI),在了解客戶的產品、作業流程及需求後,提出最適、最佳的設計及產品,讓客戶以最適預算取得最佳解決方案,產品應用範圍跨越眾多領域。

檢視內容

克服 AI 智慧應用落地挑戰,導入一站式 AIoT 智慧平台,打造智造閉環

發表年月 2021-03   應用領域 AI製造運用  

應用/研究單位 中冠資訊股份有限公司

中冠 AIoT 智慧平台最主要的目的,是要將分散部署在不同電腦的AI應用,整合到同一個Web平臺中,讓員工只要以瀏覽器開啟入口網站,登入帳密,就能一站式管理工廠所有的生產資訊。例如:爐壁厚度監測AI,可透過爐壁探鑽深度與周圍壁面溫度變化的關聯性,訓練AI靠爐壁溫度變化,判斷爐壁厚薄,藉以預測爐壁冷卻元件受損情形,安排檢修時程。爐熱溫度預測AI 則是透過量測出鐵口的鐵水溫度變化,參考操作條件、鐵渣的化性分析,學習預知未來2~4小時的爐熱趨勢,藉此訓練出爐熱預測的AI,若預測到未來爐熱可能下降,就能即時調整生產參數,微調風溫、噴煤量,來維持爐熱的穩定。各 AI 智能應用案例細節,可參閱 https://www.ithome.com.tw/news/142938 報導

檢視內容

生產排程規劃

發表年月 2020-01   應用領域 AI製造運用  

應用/研究單位 民邦資訊服份有限公司 / 雲那裡產業智能

客製化程度高的製造業極難採用全自動化製程的工具,因此主要的生產資源往往是可以因應產品變化的「人力」並輔以高效率工具以提升生產力因此形成以人力為核心的「工作站」生產模式,從而形成本案例所稱之工作站式製造環境,透過產品種類、生產製程、訂單需求、生產力等資料確立利用AI最佳化模型及技術尋求最佳生產排程結果。

檢視內容

神通AI專利-MiSeeR故障預測與異常檢測系統

發表年月 2021-10   應用領域 AI製造運用  

應用/研究單位 神通資訊科技股份有限公司

為了因應未來高爾夫球國際市場競爭力及產能的需求,有別於舊廠以傳統分站式產線代工製造高爾夫球,製程多採人工作業方式進行,致使產能有限、營收受限;新建置”明揚二廠”一條流水式自動高爾夫球產線,進行感測器加裝與機台聯網,導入智慧化之供應鏈整合平台串流上下游廠商的即時資訊回饋,提供供需二端線上詢價採購、維修預知、報價出貨之自動快速回覆的e化流程,並導入供應商管理存貨(VMI)模式,生產製程設備安裝感測器及聯網,以及數據蒐集與分析、參數調機、異況通知、預知保修與AOI智慧品檢等,讓回覆的速度加快、反應的時效縮短、生產更為順暢、訊息完全透通,確保產製過程中供料穩定、交期準確及產品合格,並且在資訊通透下減少了交易成本與流程時間。並於品檢端規劃與導入機器視覺、AI人工智慧及深度學習進行高爾夫球之瑕疵檢測,提升球體表面全檢速度、機器參數設定的最適(佳)化,以利提供一快速流暢的生產流程、提升產能與速度。

檢視內容

國產化製粒產線智慧整合應用系統

發表年月 2020-09   應用領域 AI製造運用  

應用/研究單位 思納捷科技股份有限公司

有許多傳統產業之生產機台大都是封閉式系統,依賴資深的”老師傅”經驗進行機台參數調校,以維持生產順利與生產品質。 然而面臨智慧製造之機台聯網需求,既有機台升級汰換的高額成本大幅阻礙了傳統產業升級的規劃。 因此,此案例透過採用非侵入式感測技術取得傳統製粒機台的電氣信號、振動信號,並使用AI機器學習演算法來建立機台 協助廠商傳統產業建立「生產機台徵兆訊號擷取與連網建置」、「即時生產資訊可視化平台」及「有機肥製造廠區生產智慧化模組」,以協助業者進行有機肥料的品質優化及達到提升設備稼動率並降低生產與人力監控成本

檢視內容

AI.AOI 質檢新應用-DIP 瑕疵質檢機(波峰銲PCBA檢測)

發表年月 2021-01   應用領域 AI製造運用  

應用/研究單位 小柿智檢

小柿自主研發AI DIP瑕疵檢查機。 適用於波峰銲完的PCBA外觀檢測 可搭載在客戶產線上,也可運用在獨立檢測機台 搭配線性掃描光學模組,完整覆蓋拍攝物之表面取像。 自主研發的小樣本學習瑕疵檢測技術,僅使用10~20張良品影像,即可快速建模、投入檢測,適用於少量多樣的場景,客戶使用小量良品,即可在5~10分快速建模,可自動標註元件節省客戶調整時間,即可立即投入產線檢測。自主研發的AI深度學習技術,可實現PCBA之外觀檢測,例如缺件、極反、錯件、偏移、破損等瑕疵檢出。

檢視內容

驅動全世界的精密小鋼珠‒以預測與健康管理技術提升產品品質

發表年月 2021-05   應用領域 AI製造運用  

應用/研究單位 機智雲股份有限公司 / 逢甲大學張淵仁智慧機械與系統實驗室

案例‒鋼珠製造產業長期以來面臨產品種類眾多、尺寸規格複雜、客戶經常性改單導致生產線產能分配不均、工裝次數頻繁、磨盤異常損壞增加等問題,造成工廠生產效率不佳。鋼珠製造流程從原物料的線材、鍛造到形成鋼珠的粗研磨、熱處理、細研磨、精研磨,最後為成品的洗淨、檢驗和全檢;其中主要的瓶頸為粗研磨至精研磨的關鍵三道研磨製程。其原因為鋼珠在研磨過程無法即時監控磨盤的狀況,容易造成堵溝、尺寸變異,嚴重時將造成磨盤崩裂而傷及鋼珠的完整性,若因人員的疏失造成規值的錯誤,不但造成產能的損失且增加成品久置而生鏽的可能性,增加產品重製的加工成本及工廠的產品產出時間(cycle time)。

檢視內容

全方位3D智慧自動化極光設備

發表年月 2019-03   應用領域 AI製造運用  

應用/研究單位 大氣電漿股份有限公司

3D空氣極光表面改質系統,使用結構光深度視覺掃瞄,具速度快、精度高,可即時掃瞄生成路徑,進行極光表面改質,適用於各種形狀及材質,無需事先進行任何設定。此應用對於中小企業或傳統產業,非常的重要,雖然多關結式的機器手臂最接近人體的結構,使用上相對靈活,很適合應用在少量多樣的製造。但這種機器人在設定及操作上也相對的複雜,所以一般的中小企業或傳統產業,極少有能力可以設定及撰寫多關結式機器人的程式,加上要收集手臂上的數據完全是難上加難,造成產業升級、彈性製造都淪為空談。 我司自主研發的極光表面改質系統,在異質接合上改善傳統製程上的污染,以鞋業為例:原本橡膠和EVA的接合,需要打磨、酸鹼洗、烘乾、處理劑、膠水等步驟,其中會產水和空氣的污染,造成企業成本上升、居民抗議、環境負擔。但如果使用我司的極光表面改質系統,橡膠與EVA的結合,製程上會改成清水洗、烘乾、極光處理、水膠接合。不但工序減少、產能提升,更重要的是與傳統製程相比,至少減少99%的環境污染,而達成企業、消費者、地球 三贏的局面。

檢視內容

智慧製造解決方案:良率預測及保修預測

發表年月 2017-12   應用領域 AI製造運用  

應用/研究單位 漢門科技股份有限公司

透過提高生產現況回饋的即時性,減少不良產品產出之機會並降低假警報,進而優化生產管制上下限; 在設備上安裝控制器, 負責收集資料並回傳至伺服器, 以利遠端監控執行異常維修預測,當預測可能有異常時,即時通知現場人員處置除了定期維修保養外,還可以預防異常維修的情況,則對於產線生產調度增加靈活與彈性,降低待工風險,並能提供排產即時參考與產線平衡管理

檢視內容

機能性飲品AI智慧工廠

發表年月 2019-09   應用領域 AI製造運用  

應用/研究單位 所羅門股份有限公司

在高速生產的產線中,使用AI方式檢測機能性飲品瓶罐的缺陷,包括瓶口裂紋、瓶蓋破損、字體噴印不良、異物掉入等,提升瑕疵檢出的能力,大幅強化產線溯源管理及紀錄存留的效率。

檢視內容