AI PHM預兆診斷系統
發表年月 2023-08 應用領域 AI製造運用應用/研究單位 PHM/聖森雲端科技
本PHM系統的核心價值在於其能夠精確地預測設備健康狀態與設備的製程狀態,提高生產過程的效率。透過結合IOT、邊緣運算,系統不僅能夠減少算力需求和演算時間,還能夠降低誤判風險,提高模型的遷移性。這項創新技術將為製造業的數位轉型帶來巨大的改變,協助企業實現高效運營和成本降低。
檢視內容本PHM系統的核心價值在於其能夠精確地預測設備健康狀態與設備的製程狀態,提高生產過程的效率。透過結合IOT、邊緣運算,系統不僅能夠減少算力需求和演算時間,還能夠降低誤判風險,提高模型的遷移性。這項創新技術將為製造業的數位轉型帶來巨大的改變,協助企業實現高效運營和成本降低。
檢視內容為了解決X光影像資料不足、類型不夠多樣的問題,我們開發了一套「影像擴增應用程式」,可以幫助建立更多、更豐富的訓練資料,用來提升AI模型辨識可疑物品的能力。這個程式有操作簡單的圖形介面,只要選好資料夾和影像變化的方式,就能自動批次處理大量X光影像。 整體來說,這項工具不只操作方便、靈活性高,也能有效補強訓練資料的不足,協助海關或安全單位建立更聰明、更有效率的智慧查驗系統。
檢視內容透過人工智慧演算法來實現 (1) 工程師的調校經驗系統化及 (2) 調校結果的量化分析,幫助專業工程師在更短時間找出更佳的參數組合。此工具初期是以人機協作的方式運行,隨著智慧系統在過程中不斷自動學習最終可達到產品模型參數的全自動調校。
檢視內容案例‒鋼珠製造產業長期以來面臨產品種類眾多、尺寸規格複雜、客戶經常性改單導致生產線產能分配不均、工裝次數頻繁、磨盤異常損壞增加等問題,造成工廠生產效率不佳。鋼珠製造流程從原物料的線材、鍛造到形成鋼珠的粗研磨、熱處理、細研磨、精研磨,最後為成品的洗淨、檢驗和全檢;其中主要的瓶頸為粗研磨至精研磨的關鍵三道研磨製程。其原因為鋼珠在研磨過程無法即時監控磨盤的狀況,容易造成堵溝、尺寸變異,嚴重時將造成磨盤崩裂而傷及鋼珠的完整性,若因人員的疏失造成規值的錯誤,不但造成產能的損失且增加成品久置而生鏽的可能性,增加產品重製的加工成本及工廠的產品產出時間(cycle time)。
檢視內容專為現代紡織業打造的 AI 驅動布料數位化解決方案,結合高解析度掃描機與雲端軟體,將織物的開發、共享與生產全面數位化。只需幾個步驟,即可生成精準呈現織紋與物理特性的數位孿生,並於 3D 環境中即時預覽與模擬垂墜效果,實現打樣前的快速設計決策。 透過 AI 自動完成無縫拼接與紋理貼圖,NunoX 大幅簡化繁瑣流程,降低 3D 設計的導入門檻。所有數位布料可即時儲存、編輯與分享,為全球供應鏈帶來更高效的協作體驗。 導入 NunoX 解決方案有助於減少樣品浪費、減短開發時程,加速產品上市,現已獲 Under Armour、Makalot、Little King、SHAHI 等全球領先品牌信賴,持續引領數位材料開發與管理的未來。
檢視內容輔導客戶運用AI、深度學習結合客戶Domain Know-how,進行資料收集、資料前處理、轉換與分析並建立AI訓練與驗證模型,提供完整AI之解決方案,並協助客戶導入AI正循環。透過IoT(Internet of Things)或工業相機將資料彙整並AI、深度學習訓練,隨後可達AI之預測。應用:AOI(Automated Optical Inspection)、工業自動化、智慧工廠、客製化服務
檢視內容透過AI多變數分析應用之技術,可以對水質進行更精確的監控與分析,實現更高效的水資源管理和處理過程。AI系統將自動調整處理工序,以應對不同的水質變化,確保出水質量滿足安全標準,同時提升水質穩定度,避免原料(藥劑)浪費。本案採用新鼎自行開發之人工智慧運行平台產品Mr.OPX(智能維運及製程優化平台),透過平台和再生水廠DCS系統串接,進行資料即時收集,並透過模型管理功能,有效的進行模型運行及維運,也透過視覺化分析介面,提供操作員即時的AI指引,協助操作員提前進行加藥調控,從而提升操作效率並實現最佳經濟效益。
檢視內容受到快時尚及網路購物風潮影響,品牌客戶對即時且準確供貨之要求越趨嚴謹。建構網實智能化製造、生產、銷售系統,以快速反應或預測市場需求,產業供應鏈垂直與水平數位化、智能化,成為全球搶單競爭關鍵。在缺乏即時內外部資訊整合條件下,每次決策都在考驗高層主管的智慧與運氣,常備原料採購時機錯誤就可能導致公司訂單賠錢,生產決策錯誤就可能導致需要空運才能達交,昂貴的空運費即大幅抵銷了訂單利潤。利用基因演算法+資源限制分類,並整合訂單、排程及產能,模擬生產排程資訊提供給廠長決策參考。此一應用可最佳化安排生產,減少瓶頸問題,提高物料供應精準度,減少停工待料的問題。
檢視內容《振海資通股份有限公司》利用AI機器學習搭配AOI技術,已部署於電容器製造業並成功實際運用。由於電解電容器為圓柱形體相關問題,此方案可解決傳統平面檢測較無法檢出的相關問題,檢測出人眼無法看到的瑕疵、測量物件尺寸及辨識物件位置等,是一套非接觸式檢測系統,可在動態製程中檢測。對所須檢測項目進行取樣,樣本進行標註數據化後,將數據透過演算法,進行瑕疵檢測數據分析,歸納出各階段產出不良品之原因,確保品質穩定性,提生良率,實現智能化的生產線。
檢視內容透過提高生產現況回饋的即時性,減少不良產品產出之機會並降低假警報,進而優化生產管制上下限; 在設備上安裝控制器, 負責收集資料並回傳至伺服器, 以利遠端監控執行異常維修預測,當預測可能有異常時,即時通知現場人員處置除了定期維修保養外,還可以預防異常維修的情況,則對於產線生產調度增加靈活與彈性,降低待工風險,並能提供排產即時參考與產線平衡管理
檢視內容本系統運用 DeepLabV3 深度學習演算法,建構一套針對保安零件瑕疵辨識的 AI 模型。為提升辨識準確率,開發團隊進行了多種攝影鏡頭與取像環境的測試,共拍攝 1,200 張探傷缺陷影像做為訓練資料,藉此強化模型辨識能力。系統透過筆電連接 RS232 轉 USB 介面,接收啟動指令後,每秒擷取 30 張即時畫面,並對每張影像應用 C1 子項所設計的瑕疵辨識演算法進行判讀,並即時在螢幕上標示出探傷瑕疵部位。整體架構可應用於製造流程的品質控管以及非破壞檢測的磁粉探傷,提升檢測探傷效率化和省人化,協助企業實現智慧缺陷非破壞檢測的探傷解決方案目標精進。
檢視內容本案AI瑕疵檢測系統採用模組化AI影像辨識架構,能依不同產線或產品特性快速調整應用模組,例如CNC加工瑕疵檢測、安全帽佩戴偵測等場域皆可靈活部署。系統具備參數化模型調控設計,可依產品規格設定辨識閾值與容許範圍,使用者能於後台即時調整以對應不同製程條件。透過邊緣運算技術結合高速工業相機與Jetson模組,系統可在0.3秒內完成瑕疵辨識與信心值判定,並自動回傳訊號至PLC進行不良品標示。此外,系統具備跨場域資料遷移學習能力,能根據既有標註資料快速微調模型,以降低重複建模成本。導入前提供POC原型驗證流程,讓客戶能於實際產線測試辨識成效與操作介面,確保後續開發更貼近實務需求。部署上採低門檻模組化設計,可透過月租或授權模式導入,提升企業導入意願。系統上線後提供模型再訓練、參數微調與遠端維運機制,確保AI辨識能力能隨產線變化持續優化,達成長期穩定運行與智慧製造轉型目標。
檢視內容隨著電子元件微型化,對檢測設備準確度之要求越來越高,然而現今檢測設備大多仍採取傳統影像處理技術來檢測瑕疵,無法滿足高準確度之需求,為了避免漏檢瑕疵,業者被迫將檢測機台靈敏度調高,其副作用就是造成了大量假瑕疵的產生,使得產線仍須耗費大量人力做二次篩檢,不僅耗費成本,且影響產品品質及生產速度。國內檢測設備業者聯策科技以AI深度學習技術進行真假瑕疵之判定,可協助PCB業者減少一半以上之假瑕疵,促進產線自動化,且以軟帶硬提升設備10倍之價值。
檢視內容以one-class learning之學習架構,導入AOI (Automated optical inspection)檢測瑕疵智慧化發展,在自動化條件下提升產品檢測辨識率,以減少人力工作負重量,包含兩部份工作,一、建立以Autoencoder與self-organizing maps為基礎之瑕疵檢測技術,並完成廠商提供實際AOI機台資料之瑕疵檢測技術測試;二、完成廠商現場機台系統整合與資料介接,將影像資料透過AOI系統之接口導入部署分析技術之邊緣運算裝置,再將分析結果傳回AOI系統中,於介面上顯示瑕疵區域。主要利用python撰寫建立影像辨識軟體,其同時具備了影像前處理功能,例如:高斯慮波(Gaussian Filtering)、均值模糊(Averaging Blur)、中值模糊(Median Blur)、雙邊濾波(Bilateral Filter)且包含分析功能與可提供數據可視化及存儲之後處理功能。使用本分析軟體可直接將原始照片進行進階分析,由預前訓練模型直接辨識產品的相片是否有無缺陷,可調控參數設定靈敏度以及協助執行品管。
檢視內容