CISA_LOGO

驅動全世界的精密小鋼珠‒以預測與健康管理技術提升產品品質

發表年月 2021-05   應用領域 AI製造運用  

應用/研究單位 機智雲股份有限公司 / 逢甲大學張淵仁智慧機械與系統實驗室

案例‒鋼珠製造產業長期以來面臨產品種類眾多、尺寸規格複雜、客戶經常性改單導致生產線產能分配不均、工裝次數頻繁、磨盤異常損壞增加等問題,造成工廠生產效率不佳。鋼珠製造流程從原物料的線材、鍛造到形成鋼珠的粗研磨、熱處理、細研磨、精研磨,最後為成品的洗淨、檢驗和全檢;其中主要的瓶頸為粗研磨至精研磨的關鍵三道研磨製程。其原因為鋼珠在研磨過程無法即時監控磨盤的狀況,容易造成堵溝、尺寸變異,嚴重時將造成磨盤崩裂而傷及鋼珠的完整性,若因人員的疏失造成規值的錯誤,不但造成產能的損失且增加成品久置而生鏽的可能性,增加產品重製的加工成本及工廠的產品產出時間(cycle time)。

檢視內容

預防性維護/肇因分析

發表年月 2024-12   應用領域 AI製造運用  

應用/研究單位 優智能股份有限公司

針對生產資料缺漏及衍生之後續產生的分析誤判,我們用 AI 工具來進行資料修補,確保資料完整性之後,再以另一 AI 工具進行快速的異常篩檢。我們將以上兩項功能和資料視覺化工具整合成可擴充功能的系統平台,便於根據使用者需求新增或調整功能。

檢視內容

IDI+ AI Platform

發表年月 2019-02   應用領域 AI製造運用  

應用/研究單位 人工智能、智慧製造、製程生管、品質保養、SCM分析人員、行銷分析人員、生產管理人員、財務預測分析師、製程與研發人員、資料科學家

Dataset Acquire資料匯入整合管理、Dataset Reprocessing 資料前處理與作業、Dataset Understanding資料理解與分析、Data Labeling資料標記輔助系統、Model Generator模型設計、Auto deployment自動發佈模型

檢視內容

AI智慧製造解決方案-工廠設備預知保養

發表年月 2023-08   應用領域 AI製造運用  

應用/研究單位 國內製造業石化產業

基於設備大數據的預測性維護與診斷 AVEVA PRiSM的APR技術 (Advanced Pattern Recognition先進模式識別),將設備的實時運行數據同其特有運行模式進行比對,發現系統行爲的細微差異,從而對設備可能存在的問題進行提前預警,實現對設備的預測性維護。早於傳統報警系統數天、數周或數月進行預警 傳統的警告方式為設定上、下界限,但PRiSM是以點的周圍來計算,利用演算法建立一個正常的模式,當實際值和預測值之間的偏差超過允許的限制時進行預先報警。

檢視內容

智慧製造之良率管理: 人工智慧自動光學檢測(AIAOI)

發表年月 2021-11   應用領域 AI製造運用  

應用/研究單位 維曙智能科技有限公司

維曙智能科技(Vizuro)是為企業打造數位轉型戰情室的跨國人工智慧新創公司,總部位於美國波士頓,研發中心在台灣台北。聚焦智慧製造良率管理,醫療影像癌症篩檢,生醫科技通路行銷策略等領域。Vizuro的核心團隊由實戰經驗豐富的多位資料科學家所組成,有別於業界(AI+AOI,人工智慧結合自動光學辨識) 大多只具備標準化的自動瑕疵辨識軟體,Vizuro在瑕疵分類之外,也推出異常偵測、因果推論、製程優化等自主研發的多元人工智慧模型,因應不同客戶的需求,並提供顧問健檢、協作團隊建立、站點模擬與概念性驗證等服務,擅長跨國的客製化專案。

檢視內容

NICE 機器人流程自動化

發表年月 2000-01   應用領域 AI製造運用  

應用/研究單位 大同世界科技

機器人流程自動化(RPA)是一套軟體自動化機器人程式,可以用來模擬人類在電腦上辦公的作業流程和行為,且不需經由特殊的硬體設備,即能將這些重複且枯燥的電腦桌面作業程序自動化。 RPA可以全天24小時待命,不僅可節省作業時間,讓企業將人力投資在更高價值的工作上,並降低人為出錯率

檢視內容

智慧製造-MusesAI協助企業產線建立您自己的AI模型

發表年月 2021-07   應用領域 AI製造運用  

應用/研究單位 科智企業股份有限公司

MusesAI- 是提供製造業非資訊人員,透過一站式介面指示精靈,可快速、簡單、準確度高方式,在系統介面自動協同標註特徵及自動訓練AI模型,而後即可立即下載佈署使用的一站式AI模型開發平台,其中AI應用模組類別包含影像類及數據類兩大方向,影像類涵蓋物件辨識(數量、標工)、人員行為辨識、工地安全等;而數據類則涵蓋機台閒置預測、設備故障診斷等應用,可大幅降低一般AI模型開發門檻及投入時間。

檢視內容

工廠專家級系統應用:企業快速導入機器學習的第一哩路

發表年月 2019-06   應用領域 AI製造運用  

應用/研究單位 杰倫智能科技股份有限公司

JWII Automated ML Engine 可協助製造業以合理的成本與快速的導入來建立高價值系統,解決工廠設備異常損失與工程品質不穩定的問題,藉此提升產品品質、生產效能、與達交率,最終達到智動化生產與智慧工廠的目標。 JWII Automated ML Engine已於諸多產業的製造環節中應用,目前已成功導入光電產業、石化產業、PCB產業、電子組裝產業、金屬加工業、設備製造業、表面處理產業、傳統產業…等,提供製程參數異常偵測、生產配方最佳化推薦、連續性製程品質預測、設備故障停機預測、異常因子分析預測…等相關製造業所應用。 JWII Automated ML Engine 可單獨使用,同時也可與企業應用系統整合如ERP、PLM、MES、IOT、WMS、BI…等異質系統中,讓這些系統被賦予AI 預測與診斷等特性,讓相關系統達到智能化的目標。

檢視內容

AI智慧瑕疵檢測-織造業者織帶檢測

發表年月 2020-11   應用領域 AI製造運用  

應用/研究單位 巨鷗科技股份有限公司

因現場操作人員無法兼顧所有機台確認狀況,當織帶編織錯誤時, 需到最後品管包裝才能確認錯誤,現場機台編織織帶60~70碼/時,會造成相當長度的損失。 當織帶會遇到明顯不良包括脫線、預計導入鞋帶工廠織帶良率檢測系統改善品管流程提前修正錯誤降低材料耗損。

檢視內容

【BailAI影像檢測】提升製造業品質的檢測系統

發表年月 2019-03   應用領域 AI製造運用  

應用/研究單位 慧演智能股份有限公司

利用工業鏡頭獲取產品檢測圖像,搭配自主研發的瑕疵檢測系統,以深度學習技術,檢查出產品各種不良項目,並判斷出良品與不良品,因應所需的效能整合NVIDIA終端設備,建構出完整的軟硬體解決方案。

檢視內容

數位分身模擬軟體開發

發表年月 2024-12   應用領域 AI製造運用  

應用/研究單位 優智能股份有限公司

透過人工智慧演算法來實現 (1) 工程師的調校經驗系統化及 (2) 調校結果的量化分析,幫助專業工程師在更短時間找出更佳的參數組合。此工具初期是以人機協作的方式運行,隨著智慧系統在過程中不斷自動學習最終可達到產品模型參數的全自動調校。

檢視內容

AI布料花色檢索系統

發表年月 2019-09   應用領域 AI製造運用  

應用/研究單位 光禾感知科技有限公司

AI布料花色檢索系統透過數位留樣系統拍照,以AI分類識別,定義不同布料材質、顏色與圖樣款式,在將數種物理特性轉化為數位化資料保存下,開發出數位化織品色彩及花色管理平台,這樣的概念類似於搜索引擎,紡織廠可以透過平台快速檢核庫存及過往記錄中最接近的色樣,以顏色及花紋識別,結合光照系統及色彩管理技術,制定紡織產業在庫存管理、數位資料庫、及產品 QC 的檢核標準,減少在打樣及確認上的時間及人力成本,同時減少人因誤差。

檢視內容

AI 能源總管需量預測系統

發表年月 2020-08   應用領域 AI製造運用  

應用/研究單位 思納捷科技股份有限公司

鋼鐵業係屬高耗能產業,據統計顯示,鋼鐵業的能源消費與二氧化碳排放比例在全國工業部門中排名第1位。尤其煉鋼製程中的數種主要加熱爐如電弧爐(EAF)、電渣重熔精煉爐ESR 、真空電弧精煉爐VAR 和真空感應熔解爐VIM等用電量都極高。 其中最重要的在於煉鋼過程中,若全廠用電設備包含前述煉鋼爐若同時投入生產時將導致用電超約,導致鉅額的超約費,造成生產成本的巨大負擔。因此如何配合煉鋼作業同時避免超約罰款,是業者迫切要克服的難題。

檢視內容

AOI+AI 智慧產線串聯,打造高效率生產現場管理

發表年月 2024-09   應用領域 AI製造運用  

應用/研究單位 緯謙科技股份有限公司 

因應少量多樣的訂單複雜性需求,透過建置上下游供應鏈資訊串流平台與外包商空桶管理系統,提升供應鏈串接的能力,並藉由射出機連線與可視化看板、AI 智慧排程系統,提升製造端管理手法,進行智慧化生產現場管理,進而達到指標的改善。

檢視內容

AOI瑕疵檢測快精準、智動複檢更省力

發表年月 2018-06   應用領域 AI製造運用  

應用/研究單位 工業技術研究院 巨量資訊科技中心

隨著電子元件微型化,對檢測設備準確度之要求越來越高,然而現今檢測設備大多仍採取傳統影像處理技術來檢測瑕疵,無法滿足高準確度之需求,為了避免漏檢瑕疵,業者被迫將檢測機台靈敏度調高,其副作用就是造成了大量假瑕疵的產生,使得產線仍須耗費大量人力做二次篩檢,不僅耗費成本,且影響產品品質及生產速度。國內檢測設備業者聯策科技以AI深度學習技術進行真假瑕疵之判定,可協助PCB業者減少一半以上之假瑕疵,促進產線自動化,且以軟帶硬提升設備10倍之價值。

檢視內容