物流場域易碎品隨機辨識系統
發表年月 2020-05 應用領域 AI製造運用應用/研究單位 所羅門股份有限公司
一般市面上的機械手臂通常只能執行單一物件的取放,在少量多樣或產品變異性高的產線中,不容易實現自動化的需求。本案透過AI演算法和3D成像技術來揀選未知物品,即使它們被緊密的包裝在一起,仍然能夠辨識出個別包裹,系統也能計算出最佳的揀選點,規畫路徑引導手臂避免碰撞。
檢視內容一般市面上的機械手臂通常只能執行單一物件的取放,在少量多樣或產品變異性高的產線中,不容易實現自動化的需求。本案透過AI演算法和3D成像技術來揀選未知物品,即使它們被緊密的包裝在一起,仍然能夠辨識出個別包裹,系統也能計算出最佳的揀選點,規畫路徑引導手臂避免碰撞。
檢視內容奕瑞科技將Deep Learning 演算法極盡所能的在各個領域做出落地的解決方案,除了本身精研的核心演算法之外,還能貼近客戶的需求,與客戶共同討論出最適合的解決方案,並且跟著客戶的SOP,不斷地做滾動式的來回討論,以期用AI 人工智能技術,真正改善客戶在管理上的困難。其解決方案包含解決員工需要監看包商是否違規,交由演算法來判斷,能避免掉人與人之間的摩擦,並且節省了大量的人力監督。另外,AI/AOI 瑕疵檢測也解決了傳統瑕疵檢測過多的誤殺(判)造成現場作業的混亂以及不必要的浪費,AI/AOI能夠制定出容錯空間,讓生產線上的員工(期望篩選標準放寬)以及在辦公室處理客訴的管理或是業務人員(期望篩選標準從嚴)達成最最精準的平衡,並且能夠整合後端自動化生產設備,即時傳送訊號讓機器手臂或是相關設備做出相對應的反應。
檢視內容本PHM系統的核心價值在於其能夠精確地預測設備健康狀態與設備的製程狀態,提高生產過程的效率。透過結合IOT、邊緣運算,系統不僅能夠減少算力需求和演算時間,還能夠降低誤判風險,提高模型的遷移性。這項創新技術將為製造業的數位轉型帶來巨大的改變,協助企業實現高效運營和成本降低。
檢視內容我們瞭解在零件清洗的製程當中,去離子水的潔淨度至關重要, 就讓 FlowVIEW 協助您掌握最精準的微粒子監控數據! FlowVIEW 使用最新的雷射感測技術,搭配超精密的多通流道, 用心研發出專為可靠性設計的<全自動多通道粒子檢測系統>。 可完美整合到您的設備當中,是為汙染管控的理想產品。 以1µm的靈敏度搭配每分鐘30ml的流速, <全自動多通道粒子檢測系統>可24小時不間斷地分析水質並即時回傳數據。 使用者可輕鬆判讀微粒子數量的變化,有效監控水質與處理槽系統狀態, 大幅提升零件清洗製程的效率。
檢視內容因現場操作人員無法兼顧所有機台確認狀況,當織帶編織錯誤時, 需到最後品管包裝才能確認錯誤,現場機台編織織帶60~70碼/時,會造成相當長度的損失。 當織帶會遇到明顯不良包括脫線、預計導入鞋帶工廠織帶良率檢測系統改善品管流程提前修正錯誤降低材料耗損。
檢視內容AI航燃靜電消散劑添加量優化系統,透過大量感測器資料數據收集創造原始資料庫,科智企業採用人工智慧深度學習(Deep Learning),以及演算法,透過MusesAI平台整合所有資料來源並精密分析運算後,即時監控工廠油槽靜電穩定度,提升出油槽量導電度之穩定性,協助改善客戶端現有之航燃靜電消散劑添加量優化之依據,讓使用者能快速掌握油槽狀況,以確保運送過程安全。 同時也可以整合科智企業發展的ServCloud,不僅協助自主客戶並能擴大至上下游,整合各個廠域工廠資料,打造智慧供應鏈,也可以將原先廠內的ERP、MES資料進行介接,不浪費企業內部資源。將機台、人員、金流、報工資訊等重要工廠議題,進行整合與使用,讓工廠資訊即時且透明化。 目前已成功導入台灣化學工業事業體群。
檢視內容(1)初始透過訪談產業專家確定預測需求及影響產品銷售預測之關鍵變數(例如季節,品項大類,淡旺季..等) 。 (2)進行資料擷取、資料清洗、資料整理與資料整理等前置程序。 (3)而後基於數量分析流程,進行描述性統計分析、相關性分析等步驟,以確認變數及其關聯性。 (4)透過銷售預測的模型建立,直接成效反映在備料精確度及人員溝通效率提升,並提升初次合作的高質量客戶滿意度,達成高需求量判斷兌現率。 (5)模型曲線置入缺料預警戰情,提早指示/警示/預警,以報表/移動平台/戰情看板/即時通訊軟體…等呈現,拉動供應商,降低無效追料損耗。 (6)資料來源為ERP/MES,銷售預測與排程系統整合,動態模擬調整庫存水位,因應少量多樣需求,降低庫存呆料, 滿足達交,體現企業提升毛利。 (7)數據歸納出模型後,不需大量,也具參考,只須持續數據量與驗證,提高精準度,強化企業體質,降低人為干預,以數據智能面向市場。 (8)數位優化/世代交替/新冠疫情過後,客戶及供應商重新洗牌,產業高值轉型,跨足新市場,爭取新客人,都須仰賴數據驅動思考變革的方向。 (9) AI 銷售預測可以應用於ODM/OBM/自有品牌製造業。
檢視內容AI刀具智慧壽命監控可以將工廠重要議題浮出檯面並予以解決,透過機器數據收集,大量擷取機台資訊創造原始資料庫,科智企業採用人工智慧深度學習(Deep Learning),以及演算法,透過平台整合所有資料來源並精密分析運算後,讓工廠最常出現的耗材「刀具」予以控管,並且知悉刀具使用時間、個別磨耗程度、追蹤管理刀具庫,同時也具備磨耗預警功能,讓使用者能快速掌握工廠加工狀況,以確保所製造出的產品品質以及刀具成本控管。 同時也可以整合科智企業發展的ServCloud,不僅協助自主客戶並能擴大至上下游,整合各個廠域工廠資料,打造智慧供應鏈,也可以將原先廠內的ERP、MES資料進行介接,不浪費企業內部資源。將機台、人員、金流、報工資訊等重要工廠議題,進行整合與使用,讓工廠資訊即時且透明化。目前已成功導入台灣中小事業群體,以及外銷機聯網產品至海外如:泰國、印度、大陸、歐洲等國家。
檢視內容基於設備大數據的預測性維護與診斷 AVEVA PRiSM的APR技術 (Advanced Pattern Recognition先進模式識別),將設備的實時運行數據同其特有運行模式進行比對,發現系統行爲的細微差異,從而對設備可能存在的問題進行提前預警,實現對設備的預測性維護。早於傳統報警系統數天、數周或數月進行預警 傳統的警告方式為設定上、下界限,但PRiSM是以點的周圍來計算,利用演算法建立一個正常的模式,當實際值和預測值之間的偏差超過允許的限制時進行預先報警。
檢視內容隨著電子元件微型化,對檢測設備準確度之要求越來越高,然而現今檢測設備大多仍採取傳統影像處理技術來檢測瑕疵,無法滿足高準確度之需求,為了避免漏檢瑕疵,業者被迫將檢測機台靈敏度調高,其副作用就是造成了大量假瑕疵的產生,使得產線仍須耗費大量人力做二次篩檢,不僅耗費成本,且影響產品品質及生產速度。國內檢測設備業者聯策科技以AI深度學習技術進行真假瑕疵之判定,可協助PCB業者減少一半以上之假瑕疵,促進產線自動化,且以軟帶硬提升設備10倍之價值。
檢視內容利用安裝於工廠產線或各種戶外嚴苛環境的工業等級的 ToF 與stereoscopy 3D相機擷取大量2D與3D影像,經由立普思團隊特殊的AI機器學習演算法與大數據整合,可有效識別並重建各式物體在3D空間中的相關位置資訊,配合立普思獨家的硬體加速與平行處理功能,可實現高禎率即時物件與人形識別,可廣泛應用於工業4.0、智慧零售、智慧農業、健康照護、安全監控等各種不同領域。 立普思的製鞋自動化方案同時整合了2D與3D機器視覺、手臂控制、電漿噴塗、與機台控制等,能有效取代傳統製鞋業的人工步驟,同時藉由單隻或多隻 2D/3D攝影機,透過影像拼接 (image stitch)方式,將物件全方位掃描結果搭配AI深度學習的自動路徑規劃,直接控制機器手臂帶動電漿噴頭,以精準的法向量覆蓋鞋底全表面進行噴塗,相較目前大多數使用線雷射掃描的方案有更快的整體反應速度,同時也更具價格競爭力。立普思的VGR (Vision Guided Robotic) 方案目前已成功導入製鞋生產,此技術同時也可應用在各種相關產業,或是搭配立普思的其他AI應用如人臉辨識 (Facial Recognition)、人流計數 (People Counting) 、身形辨識 (Pose Estimation)等。
檢視內容受到快時尚及網路購物風潮影響,品牌客戶對即時且準確供貨之要求越趨嚴謹。建構網實智能化製造、生產、銷售系統,以快速反應或預測市場需求,產業供應鏈垂直與水平數位化、智能化,成為全球搶單競爭關鍵。在缺乏即時內外部資訊整合條件下,每次決策都在考驗高層主管的智慧與運氣,常備原料採購時機錯誤就可能導致公司訂單賠錢,生產決策錯誤就可能導致需要空運才能達交,昂貴的空運費即大幅抵銷了訂單利潤。利用基因演算法+資源限制分類,並整合訂單、排程及產能,模擬生產排程資訊提供給廠長決策參考。此一應用可最佳化安排生產,減少瓶頸問題,提高物料供應精準度,減少停工待料的問題。
檢視內容輔導客戶運用AI、深度學習結合客戶Domain Know-how,進行資料收集、資料前處理、轉換與分析並建立AI訓練與驗證模型,提供完整AI之解決方案,並協助客戶導入AI正循環。透過IoT(Internet of Things)或工業相機將資料彙整並AI、深度學習訓練,隨後可達AI之預測。應用:AOI(Automated Optical Inspection)、工業自動化、智慧工廠、客製化服務
檢視內容針對生產資料缺漏及衍生之後續產生的分析誤判,我們用 AI 工具來進行資料修補,確保資料完整性之後,再以另一 AI 工具進行快速的異常篩檢。我們將以上兩項功能和資料視覺化工具整合成可擴充功能的系統平台,便於根據使用者需求新增或調整功能。
檢視內容