CISA_LOGO

AI-AOI 基於深度學習之光學檢測解決方案

發表年月 2016-06   應用領域 AI製造運用  

應用/研究單位 慧穩科技股份有限公司

輔導客戶運用AI、深度學習結合客戶Domain Know-how,進行資料收集、資料前處理、轉換與分析並建立AI訓練與驗證模型,提供完整AI之解決方案,並協助客戶導入AI正循環。透過IoT(Internet of Things)或工業相機將資料彙整並AI、深度學習訓練,隨後可達AI之預測。應用:AOI(Automated Optical Inspection)、工業自動化、智慧工廠、客製化服務

檢視內容

AI布料花色檢索系統

發表年月 2019-09   應用領域 AI製造運用  

應用/研究單位 光禾感知科技有限公司

AI布料花色檢索系統透過數位留樣系統拍照,以AI分類識別,定義不同布料材質、顏色與圖樣款式,在將數種物理特性轉化為數位化資料保存下,開發出數位化織品色彩及花色管理平台,這樣的概念類似於搜索引擎,紡織廠可以透過平台快速檢核庫存及過往記錄中最接近的色樣,以顏色及花紋識別,結合光照系統及色彩管理技術,制定紡織產業在庫存管理、數位資料庫、及產品 QC 的檢核標準,減少在打樣及確認上的時間及人力成本,同時減少人因誤差。

檢視內容

機械手臂視覺瑕疵偵測解決方案

發表年月 2021-02   應用領域 AI製造運用  

應用/研究單位 海量數位工程股份有限公司

透過AOI人工智慧辨識設備結合機器手臂,改善人工目測檢視產品之誤差,以提升效率。未來將AOI所收集之數據與MES系統所記錄之製造數據對照,可快速發現錯誤數據,改善生產效率。

檢視內容

AOI瑕疵檢測快精準、智動複檢更省力

發表年月 2018-06   應用領域 AI製造運用  

應用/研究單位 工業技術研究院 巨量資訊科技中心

隨著電子元件微型化,對檢測設備準確度之要求越來越高,然而現今檢測設備大多仍採取傳統影像處理技術來檢測瑕疵,無法滿足高準確度之需求,為了避免漏檢瑕疵,業者被迫將檢測機台靈敏度調高,其副作用就是造成了大量假瑕疵的產生,使得產線仍須耗費大量人力做二次篩檢,不僅耗費成本,且影響產品品質及生產速度。國內檢測設備業者聯策科技以AI深度學習技術進行真假瑕疵之判定,可協助PCB業者減少一半以上之假瑕疵,促進產線自動化,且以軟帶硬提升設備10倍之價值。

檢視內容

AI 智能自動光學檢測技術

發表年月 2016-04   應用領域 AI製造運用  

應用/研究單位 智合科技有限公司

智合科技的研發團隊 採用最新人工智慧深度學習(Deep Learning) 並結合 AOI 技術, 可進行 不規則形狀物件的品質評估:使用 AI 物件偵測, 然後再透過 AOI 進行 2D 資訊計算, 產生評估數據 例如:農業產品 / 不易數據化的物件 / 非標準品的測量 / 2D 與 3D 的數據呈現 不易測量的物件:使用 AI 的技術, 針對邊緣影像的準確度進行推估, 確保整體的檢測數據的信賴性 例如:高精密度金屬加工物件的邊緣值 另外可透過 嵌入式邊緣計算平台, 進行上述技術的整合, 有效降低整體系統的建置成本

檢視內容

千金可買早知道 - 設備故障預診斷與健康管理技術

發表年月 2017-08   應用領域 AI製造運用  

應用/研究單位 工業技術研究院服務 巨量資訊科技中心

生產製造公司83%的資訊長認為,設備維護以及總體資產分析最佳化為提升企業競爭力之最主要途徑。「機台故障預診斷」是一套人工智慧(AI)與機器學習的系統,分析機台所產生的製程資料,進行即時監看、預測並以視覺化資料呈現,讓產線管理者可以掌握設備的健康狀態。

檢視內容

智慧製造-MusesAI協助企業產線建立您自己的AI模型

發表年月 2021-07   應用領域 AI製造運用  

應用/研究單位 科智企業股份有限公司

MusesAI- 是提供製造業非資訊人員,透過一站式介面指示精靈,可快速、簡單、準確度高方式,在系統介面自動協同標註特徵及自動訓練AI模型,而後即可立即下載佈署使用的一站式AI模型開發平台,其中AI應用模組類別包含影像類及數據類兩大方向,影像類涵蓋物件辨識(數量、標工)、人員行為辨識、工地安全等;而數據類則涵蓋機台閒置預測、設備故障診斷等應用,可大幅降低一般AI模型開發門檻及投入時間。

檢視內容

Tukey Service - 預防非計畫性停機系統

發表年月 2021-02   應用領域 AI製造運用  

應用/研究單位 Chimes AI 詠鋐智能股份有限公司

由 Chimes AI 詠鋐智能所開發的無程式碼(No-Code)模型生命週期管理平台 Tukey,作為核心引擎,幫助最熟悉機台狀況的設備保養工程師,彈性的調用Tukey內建或是企業投資開發的演算法,建置設備監診 AI 模型。機台設備可根據AI 模型建立設備性能曲線,設備保養工程師可根據此設備性能曲線,監控全廠設備運行狀況。系統根據性能指標預先反應設備衰退現象,經由系統判斷風險等級,協助保修人員安排計畫性維修,提高設備稼動率,延長設備服務年限,有效的降低工安意外災害。

檢視內容

AI智慧製造解決方案-工廠設備預知保養

發表年月 2023-08   應用領域 AI製造運用  

應用/研究單位 國內製造業石化產業

基於設備大數據的預測性維護與診斷 AVEVA PRiSM的APR技術 (Advanced Pattern Recognition先進模式識別),將設備的實時運行數據同其特有運行模式進行比對,發現系統行爲的細微差異,從而對設備可能存在的問題進行提前預警,實現對設備的預測性維護。早於傳統報警系統數天、數周或數月進行預警 傳統的警告方式為設定上、下界限,但PRiSM是以點的周圍來計算,利用演算法建立一個正常的模式,當實際值和預測值之間的偏差超過允許的限制時進行預先報警。

檢視內容

製造業核心痛點:刀具壽命管理 不再miss任何可以切削的機會

發表年月 2019-03   應用領域 AI製造運用  

應用/研究單位 科智企業股份有限公司

AI刀具智慧壽命監控可以將工廠重要議題浮出檯面並予以解決,透過機器數據收集,大量擷取機台資訊創造原始資料庫,科智企業採用人工智慧深度學習(Deep Learning),以及演算法,透過平台整合所有資料來源並精密分析運算後,讓工廠最常出現的耗材「刀具」予以控管,並且知悉刀具使用時間、個別磨耗程度、追蹤管理刀具庫,同時也具備磨耗預警功能,讓使用者能快速掌握工廠加工狀況,以確保所製造出的產品品質以及刀具成本控管。 同時也可以整合科智企業發展的ServCloud,不僅協助自主客戶並能擴大至上下游,整合各個廠域工廠資料,打造智慧供應鏈,也可以將原先廠內的ERP、MES資料進行介接,不浪費企業內部資源。將機台、人員、金流、報工資訊等重要工廠議題,進行整合與使用,讓工廠資訊即時且透明化。目前已成功導入台灣中小事業群體,以及外銷機聯網產品至海外如:泰國、印度、大陸、歐洲等國家。

檢視內容

AI視覺圓周銲接自動化

發表年月 2020-11   應用領域 AI製造運用  

應用/研究單位 所羅門股份有限公司

本案例使用視覺辨識銲道的位置和姿態,再驅使機械手臂進行全周銲。同時進行銲接品質之AI檢測,在銲接完成的端板上方架設一台CCD,捕捉銲道的影像,使用訓練好的模型便可立即辨識出端板銲道的各種缺陷和瑕疵,若辨識出有缺陷或瑕疵的端板會發出警示,通知工作人員進行補銲之作業。

檢視內容

神通AI+AOI,有效鑑別良品,減少60%人工復判需求

發表年月 2021-03   應用領域 AI製造運用  

應用/研究單位 神通資訊科技股份有限公司

以one-class learning之學習架構,導入AOI (Automated optical inspection)檢測瑕疵智慧化發展,在自動化條件下提升產品檢測辨識率,以減少人力工作負重量,包含兩部份工作,一、建立以Autoencoder與self-organizing maps為基礎之瑕疵檢測技術,並完成廠商提供實際AOI機台資料之瑕疵檢測技術測試;二、完成廠商現場機台系統整合與資料介接,將影像資料透過AOI系統之接口導入部署分析技術之邊緣運算裝置,再將分析結果傳回AOI系統中,於介面上顯示瑕疵區域。主要利用python撰寫建立影像辨識軟體,其同時具備了影像前處理功能,例如:高斯慮波(Gaussian Filtering)、均值模糊(Averaging Blur)、中值模糊(Median Blur)、雙邊濾波(Bilateral Filter)且包含分析功能與可提供數據可視化及存儲之後處理功能。使用本分析軟體可直接將原始照片進行進階分析,由預前訓練模型直接辨識產品的相片是否有無缺陷,可調控參數設定靈敏度以及協助執行品管。

檢視內容

3D 機器視覺搭配AI路徑規劃引領製鞋自動化新革命

發表年月 2019-12   應用領域 AI製造運用  

應用/研究單位 立普思股份有限公司

利用安裝於工廠產線或各種戶外嚴苛環境的工業等級的 ToF 與stereoscopy 3D相機擷取大量2D與3D影像,經由立普思團隊特殊的AI機器學習演算法與大數據整合,可有效識別並重建各式物體在3D空間中的相關位置資訊,配合立普思獨家的硬體加速與平行處理功能,可實現高禎率即時物件與人形識別,可廣泛應用於工業4.0、智慧零售、智慧農業、健康照護、安全監控等各種不同領域。 立普思的製鞋自動化方案同時整合了2D與3D機器視覺、手臂控制、電漿噴塗、與機台控制等,能有效取代傳統製鞋業的人工步驟,同時藉由單隻或多隻 2D/3D攝影機,透過影像拼接 (image stitch)方式,將物件全方位掃描結果搭配AI深度學習的自動路徑規劃,直接控制機器手臂帶動電漿噴頭,以精準的法向量覆蓋鞋底全表面進行噴塗,相較目前大多數使用線雷射掃描的方案有更快的整體反應速度,同時也更具價格競爭力。立普思的VGR (Vision Guided Robotic) 方案目前已成功導入製鞋生產,此技術同時也可應用在各種相關產業,或是搭配立普思的其他AI應用如人臉辨識 (Facial Recognition)、人流計數 (People Counting) 、身形辨識 (Pose Estimation)等。

檢視內容

數位分身模擬軟體開發

發表年月 2024-12   應用領域 AI製造運用  

應用/研究單位 優智能股份有限公司

透過人工智慧演算法來實現 (1) 工程師的調校經驗系統化及 (2) 調校結果的量化分析,幫助專業工程師在更短時間找出更佳的參數組合。此工具初期是以人機協作的方式運行,隨著智慧系統在過程中不斷自動學習最終可達到產品模型參數的全自動調校。

檢視內容

智慧製造解決方案:良率預測及保修預測

發表年月 2017-12   應用領域 AI製造運用  

應用/研究單位 漢門科技股份有限公司

透過提高生產現況回饋的即時性,減少不良產品產出之機會並降低假警報,進而優化生產管制上下限; 在設備上安裝控制器, 負責收集資料並回傳至伺服器, 以利遠端監控執行異常維修預測,當預測可能有異常時,即時通知現場人員處置除了定期維修保養外,還可以預防異常維修的情況,則對於產線生產調度增加靈活與彈性,降低待工風險,並能提供排產即時參考與產線平衡管理

檢視內容