NICE 機器人流程自動化
發表年月 2000-01 應用領域 AI製造運用應用/研究單位 大同世界科技
機器人流程自動化(RPA)是一套軟體自動化機器人程式,可以用來模擬人類在電腦上辦公的作業流程和行為,且不需經由特殊的硬體設備,即能將這些重複且枯燥的電腦桌面作業程序自動化。 RPA可以全天24小時待命,不僅可節省作業時間,讓企業將人力投資在更高價值的工作上,並降低人為出錯率
檢視內容機器人流程自動化(RPA)是一套軟體自動化機器人程式,可以用來模擬人類在電腦上辦公的作業流程和行為,且不需經由特殊的硬體設備,即能將這些重複且枯燥的電腦桌面作業程序自動化。 RPA可以全天24小時待命,不僅可節省作業時間,讓企業將人力投資在更高價值的工作上,並降低人為出錯率
檢視內容維曙智能科技(Vizuro)是為企業打造數位轉型戰情室的跨國人工智慧新創公司,總部位於美國波士頓,研發中心在台灣台北。聚焦智慧製造良率管理,醫療影像癌症篩檢,生醫科技通路行銷策略等領域。Vizuro的核心團隊由實戰經驗豐富的多位資料科學家所組成,有別於業界(AI+AOI,人工智慧結合自動光學辨識) 大多只具備標準化的自動瑕疵辨識軟體,Vizuro在瑕疵分類之外,也推出異常偵測、因果推論、製程優化等自主研發的多元人工智慧模型,因應不同客戶的需求,並提供顧問健檢、協作團隊建立、站點模擬與概念性驗證等服務,擅長跨國的客製化專案。
檢視內容AI布料花色檢索系統透過數位留樣系統拍照,以AI分類識別,定義不同布料材質、顏色與圖樣款式,在將數種物理特性轉化為數位化資料保存下,開發出數位化織品色彩及花色管理平台,這樣的概念類似於搜索引擎,紡織廠可以透過平台快速檢核庫存及過往記錄中最接近的色樣,以顏色及花紋識別,結合光照系統及色彩管理技術,制定紡織產業在庫存管理、數位資料庫、及產品 QC 的檢核標準,減少在打樣及確認上的時間及人力成本,同時減少人因誤差。
檢視內容我們瞭解在零件清洗的製程當中,去離子水的潔淨度至關重要, 就讓 FlowVIEW 協助您掌握最精準的微粒子監控數據! FlowVIEW 使用最新的雷射感測技術,搭配超精密的多通流道, 用心研發出專為可靠性設計的<全自動多通道粒子檢測系統>。 可完美整合到您的設備當中,是為汙染管控的理想產品。 以1µm的靈敏度搭配每分鐘30ml的流速, <全自動多通道粒子檢測系統>可24小時不間斷地分析水質並即時回傳數據。 使用者可輕鬆判讀微粒子數量的變化,有效監控水質與處理槽系統狀態, 大幅提升零件清洗製程的效率。
檢視內容透過提高生產現況回饋的即時性,減少不良產品產出之機會並降低假警報,進而優化生產管制上下限; 在設備上安裝控制器, 負責收集資料並回傳至伺服器, 以利遠端監控執行異常維修預測,當預測可能有異常時,即時通知現場人員處置除了定期維修保養外,還可以預防異常維修的情況,則對於產線生產調度增加靈活與彈性,降低待工風險,並能提供排產即時參考與產線平衡管理
檢視內容針對生產資料缺漏及衍生之後續產生的分析誤判,我們用 AI 工具來進行資料修補,確保資料完整性之後,再以另一 AI 工具進行快速的異常篩檢。我們將以上兩項功能和資料視覺化工具整合成可擴充功能的系統平台,便於根據使用者需求新增或調整功能。
檢視內容利用安裝於工廠產線或各種戶外嚴苛環境的工業等級的 ToF 與stereoscopy 3D相機擷取大量2D與3D影像,經由立普思團隊特殊的AI機器學習演算法與大數據整合,可有效識別並重建各式物體在3D空間中的相關位置資訊,配合立普思獨家的硬體加速與平行處理功能,可實現高禎率即時物件與人形識別,可廣泛應用於工業4.0、智慧零售、智慧農業、健康照護、安全監控等各種不同領域。 立普思的製鞋自動化方案同時整合了2D與3D機器視覺、手臂控制、電漿噴塗、與機台控制等,能有效取代傳統製鞋業的人工步驟,同時藉由單隻或多隻 2D/3D攝影機,透過影像拼接 (image stitch)方式,將物件全方位掃描結果搭配AI深度學習的自動路徑規劃,直接控制機器手臂帶動電漿噴頭,以精準的法向量覆蓋鞋底全表面進行噴塗,相較目前大多數使用線雷射掃描的方案有更快的整體反應速度,同時也更具價格競爭力。立普思的VGR (Vision Guided Robotic) 方案目前已成功導入製鞋生產,此技術同時也可應用在各種相關產業,或是搭配立普思的其他AI應用如人臉辨識 (Facial Recognition)、人流計數 (People Counting) 、身形辨識 (Pose Estimation)等。
檢視內容慧演智能專注於為製造業提供 AI 影像辨識解決方案,已成功應用於半導體、電子周邊及食品製造。 我們自主研發的 BailAI 平台,讓企業無需撰寫程式,即可完成從資料標註、模型訓練到部署推論的全流程管理。1.免寫程式、操作簡便:專為非工程背景用戶設計,一站式導入 AI 檢測。 2.快速建模、少量多樣:內建多種優化演算法,可用極少影像資料完成高效訓練。 3.靈活場域應用:模型可快速切換,適應不同工廠、產品線及檢測條件。 4.推論即時、自動監控:整合邊緣端 AI BOX,能即時判斷並記錄現場影像。 5.大幅節省成本與時程:縮短驗證週期、降低導入成本,加速 AI 成果落地。
檢視內容本案AI瑕疵檢測系統使用先進的影像處理技術,能夠從不同角度全面檢測工件,並且辨識特徵數量及各種微小的瑕疵或缺陷。相比人工檢查可能因疲勞或視覺限制而漏檢的問題,檢測系統能夠提供更高的一致性和準確度,不受人員情緒和疲勞影響,能夠保持穩定的檢測質量。過去品檢員在使用傳統方法時,需要逐一從多個角度檢查每個工件,每次檢查一個工件需要約15秒。導入AI系統則能在短短4秒內完成相同的檢查任務顯著縮短了每個工件的檢查時間。
檢視內容由於各式瑕疵原因分別在不同製程情境發生,於電鍍後進行判斷較能夠有效提升品質管制效率,需採用全檢模式以肉眼辨識,辨職難度高且高度仰賴人員的經驗,且遺漏比率約10%。透過以AOI自動光學檢測加上深度學習技術,克服金屬扳手反光之特性,提高瑕疵的辨識率(1) 縮短品檢作業時間:透過AOI智慧瑕疵檢測系統,每隻扳手檢測時間自3-4分鐘縮短至約3秒,統計報表由系統自動產出取代過去人工抄寫,且避免篩選遺漏。(2) 老師傅經驗數據化及標準化:依實際檢測數據進行標準差異值統計分析,回饋QC工程標準以優化公差設定值。(3) 生產批及不良品數量整合串接電子看板及MES、SPC系統,提高資訊即時性及加速管理報表產出。
檢視內容奕瑞科技將Deep Learning 演算法極盡所能的在各個領域做出落地的解決方案,除了本身精研的核心演算法之外,還能貼近客戶的需求,與客戶共同討論出最適合的解決方案,並且跟著客戶的SOP,不斷地做滾動式的來回討論,以期用AI 人工智能技術,真正改善客戶在管理上的困難。其解決方案包含解決員工需要監看包商是否違規,交由演算法來判斷,能避免掉人與人之間的摩擦,並且節省了大量的人力監督。另外,AI/AOI 瑕疵檢測也解決了傳統瑕疵檢測過多的誤殺(判)造成現場作業的混亂以及不必要的浪費,AI/AOI能夠制定出容錯空間,讓生產線上的員工(期望篩選標準放寬)以及在辦公室處理客訴的管理或是業務人員(期望篩選標準從嚴)達成最最精準的平衡,並且能夠整合後端自動化生產設備,即時傳送訊號讓機器手臂或是相關設備做出相對應的反應。
檢視內容AI航燃靜電消散劑添加量優化系統,透過大量感測器資料數據收集創造原始資料庫,科智企業採用人工智慧深度學習(Deep Learning),以及演算法,透過MusesAI平台整合所有資料來源並精密分析運算後,即時監控工廠油槽靜電穩定度,提升出油槽量導電度之穩定性,協助改善客戶端現有之航燃靜電消散劑添加量優化之依據,讓使用者能快速掌握油槽狀況,以確保運送過程安全。 同時也可以整合科智企業發展的ServCloud,不僅協助自主客戶並能擴大至上下游,整合各個廠域工廠資料,打造智慧供應鏈,也可以將原先廠內的ERP、MES資料進行介接,不浪費企業內部資源。將機台、人員、金流、報工資訊等重要工廠議題,進行整合與使用,讓工廠資訊即時且透明化。 目前已成功導入台灣化學工業事業體群。
檢視內容以one-class learning之學習架構,導入AOI (Automated optical inspection)檢測瑕疵智慧化發展,在自動化條件下提升產品檢測辨識率,以減少人力工作負重量,包含兩部份工作,一、建立以Autoencoder與self-organizing maps為基礎之瑕疵檢測技術,並完成廠商提供實際AOI機台資料之瑕疵檢測技術測試;二、完成廠商現場機台系統整合與資料介接,將影像資料透過AOI系統之接口導入部署分析技術之邊緣運算裝置,再將分析結果傳回AOI系統中,於介面上顯示瑕疵區域。主要利用python撰寫建立影像辨識軟體,其同時具備了影像前處理功能,例如:高斯慮波(Gaussian Filtering)、均值模糊(Averaging Blur)、中值模糊(Median Blur)、雙邊濾波(Bilateral Filter)且包含分析功能與可提供數據可視化及存儲之後處理功能。使用本分析軟體可直接將原始照片進行進階分析,由預前訓練模型直接辨識產品的相片是否有無缺陷,可調控參數設定靈敏度以及協助執行品管。
檢視內容智慧導航服務機器人 (iAGV)應用深度攝影智慧影像辨識技術與智動化科技、超音波感測技術,以Edge Computing快速反應為基礎,透過不同深度差找出特徵差異點因應不同工作環境需求之多元化定位,內建數量核對的AI揀貨同時進行數量核對,並具備「動線最適化」及「壅塞避免」的動線運算引擎,大幅提升作業效率,並獲得2018資訊月百大創新產品。工研院服科中心「iAGV智慧導航服務機器人 」突破天花板特徵深度辨識透過不同深度差找出特徵差異點,以導航整合天花板特徵深度辨識定位、導航、避障、定位等功能直接進行優化,以Edge Computing控制導航/定位模式的調整、地圖建立邏輯改良及行走控制等的動作。以低成本為考量採用簡易單晶片控制伺服馬達,並搭配低成本之影像導引裝置,達成符合業界需求價格的產品。並可機器人到貨架取貨,減少人行走道貨物能夠更緊密地存放,同時,省去員工走到貨架、取貨時間,讓出貨更有效率,節省理貨25%工時、減少人員移動距離35%與成本15%,滿足B2B、B2C等多型態發貨中心需求,並成功導入宅配物流業、資訊消費性電子產品發貨中心…等國內業者。
檢視內容現今工廠自動化的趨勢,已開始由大量機器人取代人工作業,製造業對機器人的需求及依賴程度越高,企業如何確保機器人的高可靠性呢? 因此,能夠自主性判別設備狀態與減少非計畫性停機更成為企業所需要深入探究的課題。機器學習智能監控系統即是針對各式機械設備的動態監測,使用者透過簡單建立健康規範,系統學習動作依照所累積的數據統計進而做出分析判斷,產業進而可訂立預知保養計畫並有助於設計者優化產線設計流程。 藉由即時偵測動態機械之訊號,可預測判斷機械手臂的健康狀況,及焊接作業品質的線上即時監測,使企業有較餘裕的時間安排設備維護與產線,將導入機器人的初衷發揮到極致,『做得快且做得好』
檢視內容