CISA_LOGO

機器人智能預知診斷解決方案

發表年月 2017-07   應用領域 AI製造運用   應用/研究單位 新漢智能系統股份有限公司

機器人在製造業的應用已經越來越廣泛,相對的機器人是否能順利運作對生產工作的穩定性也會有相當程度的影響。因此若是有一套系統能針對機器人的健康狀態做線上的監測,並能在機器人發生問題的初期就能發現並及早通知使用者,就能夠及早因應並採取必要的措施,就能有效降低機器人無預警的損壞造成對生產作業的衝擊。機器人自動預知診斷系統能夠7/24線上監測機器人機件運作的細微動作變化,只需要在機器人的基座放置一個震動感應sensor,系統會根據sensor量測到的訊號建立模態,內建的機器學習演算法自動對運作模態做追蹤,無須專家就能夠自動診斷機器人的健康狀態。同時也可以將相關的診斷結果透過內建的IoT Studiio(物聯網通訊軟體)傳送的Internet、雲端、Edge Server。

檢視內容

AI 智能自動光學檢測技術

發表年月 2016-04   應用領域 AI製造運用   應用/研究單位 智合科技有限公司

智合科技的研發團隊 採用最新人工智慧深度學習(Deep Learning) 並結合 AOI 技術, 可進行 不規則形狀物件的品質評估:使用 AI 物件偵測, 然後再透過 AOI 進行 2D 資訊計算, 產生評估數據 例如:農業產品 / 不易數據化的物件 / 非標準品的測量 / 2D 與 3D 的數據呈現 不易測量的物件:使用 AI 的技術, 針對邊緣影像的準確度進行推估, 確保整體的檢測數據的信賴性 例如:高精密度金屬加工物件的邊緣值 另外可透過 嵌入式邊緣計算平台, 進行上述技術的整合, 有效降低整體系統的建置成本

檢視內容

全方位3D智慧自動化極光設備

發表年月 2019-03   應用領域 AI製造運用   應用/研究單位 大氣電漿股份有限公司

3D空氣極光表面改質系統,使用結構光深度視覺掃瞄,具速度快、精度高,可即時掃瞄生成路徑,進行極光表面改質,適用於各種形狀及材質,無需事先進行任何設定。此應用對於中小企業或傳統產業,非常的重要,雖然多關結式的機器手臂最接近人體的結構,使用上相對靈活,很適合應用在少量多樣的製造。但這種機器人在設定及操作上也相對的複雜,所以一般的中小企業或傳統產業,極少有能力可以設定及撰寫多關結式機器人的程式,加上要收集手臂上的數據完全是難上加難,造成產業升級、彈性製造都淪為空談。 我司自主研發的極光表面改質系統,在異質接合上改善傳統製程上的污染,以鞋業為例:原本橡膠和EVA的接合,需要打磨、酸鹼洗、烘乾、處理劑、膠水等步驟,其中會產水和空氣的污染,造成企業成本上升、居民抗議、環境負擔。但如果使用我司的極光表面改質系統,橡膠與EVA的結合,製程上會改成清水洗、烘乾、極光處理、水膠接合。不但工序減少、產能提升,更重要的是與傳統製程相比,至少減少99%的環境污染,而達成企業、消費者、地球 三贏的局面。

檢視內容

Flow AOI 智慧自動化AI流體檢測

發表年月 2020-07   應用領域 AI製造運用   應用/研究單位 FlowVIEW 邑流微測

我們瞭解在零件清洗的製程當中,去離子水的潔淨度至關重要, 就讓 FlowVIEW 協助您掌握最精準的微粒子監控數據! FlowVIEW 使用最新的雷射感測技術,搭配超精密的多通流道, 用心研發出專為可靠性設計的<全自動多通道粒子檢測系統>。 可完美整合到您的設備當中,是為汙染管控的理想產品。 以1µm的靈敏度搭配每分鐘30ml的流速, <全自動多通道粒子檢測系統>可24小時不間斷地分析水質並即時回傳數據。 使用者可輕鬆判讀微粒子數量的變化,有效監控水質與處理槽系統狀態, 大幅提升零件清洗製程的效率。

檢視內容

AOI瑕疵檢測快精準、智動複檢更省力

發表年月 2018-06   應用領域 AI製造運用   應用/研究單位 工業技術研究院 巨量資訊科技中心

隨著電子元件微型化,對檢測設備準確度之要求越來越高,然而現今檢測設備大多仍採取傳統影像處理技術來檢測瑕疵,無法滿足高準確度之需求,為了避免漏檢瑕疵,業者被迫將檢測機台靈敏度調高,其副作用就是造成了大量假瑕疵的產生,使得產線仍須耗費大量人力做二次篩檢,不僅耗費成本,且影響產品品質及生產速度。國內檢測設備業者聯策科技以AI深度學習技術進行真假瑕疵之判定,可協助PCB業者減少一半以上之假瑕疵,促進產線自動化,且以軟帶硬提升設備10倍之價值。

檢視內容

生產排程規劃

發表年月 2020-01   應用領域 AI製造運用   應用/研究單位 民邦資訊服份有限公司 / 雲那裡產業智能

客製化程度高的製造業極難採用全自動化製程的工具,因此主要的生產資源往往是可以因應產品變化的「人力」並輔以高效率工具以提升生產力因此形成以人力為核心的「工作站」生產模式,從而形成本案例所稱之工作站式製造環境,透過產品種類、生產製程、訂單需求、生產力等資料確立利用AI最佳化模型及技術尋求最佳生產排程結果。

檢視內容

工廠聯網DIY!裝機維護自已來

發表年月 2018-07   應用領域 AI製造運用   應用/研究單位 資策會 智慧化系統所

配合變色龍聯網解決方案,資策會亦提供AI分析協助生產執行提升產能之技術支援,根據感測器蒐集機台設備運作的細部動作資訊,找出能評估老化趨勢之關鍵資訊,進而利用機器學習方法建立感測資訊與。實際案例包含砂輪機研磨耗損偵測、截斷機裁斷長度預診、空壓機異常停機特徵偵測等等,以AI技術偵測協助現場生產,提高生產良率。 聯網應用描述:資策會智慧系統所研發Pub/Sub 設備聯網閘道技術,提供低延遲且可自主維護之工廠資訊化軟體,導入後使用者可自主管理,現場設備或感測器擴充不需再外包增加資訊化成本。可涵蓋範圍包含多家PLC、CNC控制器、現場表頭、外掛感測器、通訊介面卡轉接及Barcode Reader、RFID Reader等,設備內或現場環境偵測都可集中處理,大幅提升廠內智慧化程度。

檢視內容

及時偵測軸承不良品-產品品質指標預測是關鍵

發表年月 2018-07   應用領域 AI製造運用   應用/研究單位 工業技術研究院 巨量資訊科技中心

工研院研發產品品質指標預測技術,與軸承製造大廠T公司合作進行軸承加工產線的線上測試,基於機台電力、加工應變力等大數據,透過智慧分析瞭解刀具狀態與工件品質關係,及時偵測NoGo工件,降低損失。並藉由及時調整抽檢頻率,動態配置檢測人力,使傳統離線且需成品完成後的抽檢改為線上即時的全面檢測。

檢視內容

殺手級應用:齊料管理精靈,克服製造缺料停工新武器

發表年月 2020-06   應用領域 AI製造運用   應用/研究單位 智炬科技股份有限公司

齊料管理精靈可以透過預測供應商交貨模式,讓人力集中處理需要跟催或緊急調度的工作安排,提高準確交貨率,並加入廠內的流程運作特徵,放入模型中做為計算參數之一,以期達到如期齊料開工的目標。智炬科技「智慧製造顧問團隊」加入時間序列等機器學習演算法,從企業原有資訊系統中取出預計交貨、實際交貨、預計檢驗、如期檢驗、預計發料、如期發料等資訊,整理數據之後經過演算,得出高度齊料可如期派工的工令順序、以及具高度缺料風險的工令資訊,同時找出可遞補的派工批,讓生管排程更省力化。串聯即時通訊應用技術推播高風險物料狀況,啟動全員關注料況行動,協助企業降低缺料風險,提升生產計劃達成率,減少低價值溝通行為。

檢視內容

NICE 機器人流程自動化

發表年月 2000-01   應用領域 AI製造運用   應用/研究單位 大同世界科技

機器人流程自動化(RPA)是一套軟體自動化機器人程式,可以用來模擬人類在電腦上辦公的作業流程和行為,且不需經由特殊的硬體設備,即能將這些重複且枯燥的電腦桌面作業程序自動化。 RPA可以全天24小時待命,不僅可節省作業時間,讓企業將人力投資在更高價值的工作上,並降低人為出錯率

檢視內容

自動化產線換線新利器: AI機器人自主學習技術

發表年月 2019-03   應用領域 AI製造運用   應用/研究單位 工業技術研究院 巨量資訊科技中心

因應彈性化製造之生產趨勢,製造業需要導入AI以快速學習適應不同的生產需求。AI自主學習機器人是未來製造業邁向AI時代的關鍵技術,目前工廠導入視覺機器人必須仰賴演算法工程師針對不同工件調整參數來達成任務,造成換線/任務耗時耗力。工研院以深度增強式學習(Deep Reinforcement Learning,DRL)為基礎,研發自主學習之AI機器人夾取技術, 簡單、易用,補足勞力需求。本技術之特色與創新包含: 1.機器人自主嘗試學習,減少人為介入,讓換線能夠更加快速、有彈性2.以DRL技術提供更快速、更穩定、更精確的訓練機制3.結合機器人模擬軟體,大幅減少整體學習時間與實體嘗試的次數

檢視內容

AI設備預測維護-找出故障根源不必花時間反覆試驗

發表年月 2018-10   應用領域 AI製造運用   應用/研究單位 慧演智能股份有限公司

以機器學習技術,預測出零件失效機率、零件壽命、更換權重等,可搭配AR擴增實境眼鏡,顯示物件的測試數據與維修紀錄,整合虛擬物件與實際場景,同時搭配手勢辨識控制介面,提供維修技術人員快速找到故障問題、 故障原因分析及生命週期資訊,提升維修作業效率與品質保證。

檢視內容

AI軟體以一擋百,助攻企業視覺檢測不漏接

發表年月 2019-07   應用領域 AI製造運用   應用/研究單位 Memorence AI

憶象智能影像辨識系統可以協助客戶三大方向:一提升營業額:為提高生產品質,將人工辨識的產品不良率, 藉由AI智能辨識提升產品的良率;二,降低成本:從需要大量人工的目檢辨識工作,轉由AI辨識降低錯誤節省人力, 提高生產效能,三,企業專業知識管理:縮減教育訓練時程/預防專業知識的斷層(師傅退休/跳槽)。憶象智能影像辨識系統採用最先進的深度學習之捲積神經網路(convolutional neural networks, CNNs)與電腦視覺技術,團隊具備開發AI模型設計與系統開發能力,設計出符合應用單位的AI模型,產出最符合應用客戶之檢測模型, 讓使用者可明顯獲得差異性的產品成效新體驗。 憶象智能影像辨識系統整合客戶檢測產品之圖像管理與標記,AI模型,即時統計,一站式的服務幫助企業檢視各生產鏈的問題點, 及優化備料與生產裝置設定。憶象智能影像辨識系統可以應用於各種產業的生產線應用,目前已成功導入電子業、傳統製造業、健康醫療…等,提供工廠與生產線之智慧視覺辨識應用。

檢視內容